In welding, so many factors contribute to good quality welds. The deposition rate is the rate of weld metal deposit at fusion zone during welding, which also is a key factors affecting the quality of welded joints. To...In welding, so many factors contribute to good quality welds. The deposition rate is the rate of weld metal deposit at fusion zone during welding, which also is a key factors affecting the quality of welded joints. Too high or low deposition rate compromises the integrity of weld. This study was carried out with the aim of providing an approach for producing better weldments by optimizing and predicting deposition rate of low carbon steel using Response Surface Methodology (RSM). 30 sets of experiments were done, adopting the central composite experimental design. The tungsten inert gas welding equipment was used to produce the welded joints. Argon gas was supplied to the welding process to shield the weld from atmospheric interference. Mild steel coupons measuring 60 × 40 × 10 mm was used for the experiments. The results obtained show that the voltage and current have very strong influence on the deposition rate. The models developed possess a variance inflation factor of 1. And P-value is less than 0.05, indicating that the model is significant. The models also possessed a high goodness of fit with R2 (Coefficient of determination) values of 91%. The model produced numerically obtained optimal solution of current of 160.00 Amp, voltage of 20 volts and a gas flow rate of 17 L/min produces a welded material having deposition rate of 0.4637 kg/hr. This solution was selected by design expert as the optimal solution with a desirability value of 98.8%. A weld simulation using the optimum value obtained produced a weld with good quality.展开更多
The purchasement and development as well as the benefit of utilization for the large equipment in universities of China are analyzed in this paper, the paper in dicates that in utilization of large equipment the contr...The purchasement and development as well as the benefit of utilization for the large equipment in universities of China are analyzed in this paper, the paper in dicates that in utilization of large equipment the contradictions such as urgency and necessity for the purchasement and development of large equipment and serious waste in resources since inadequacy of annual utilization rate of large equipment are existed, it also raises that the key step of giving full play to the benefit of large equipment is to strengthen management and development after the equipment are purchased, the paper regards through stressing standardized management and maintenance、opening the laboratory、improving the functions of equipment、renovating technology、fully examining and scientifically deciding before purchasement, the investment benefit for the large equipment can be raised effectively.展开更多
The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate ev...The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network.展开更多
文摘In welding, so many factors contribute to good quality welds. The deposition rate is the rate of weld metal deposit at fusion zone during welding, which also is a key factors affecting the quality of welded joints. Too high or low deposition rate compromises the integrity of weld. This study was carried out with the aim of providing an approach for producing better weldments by optimizing and predicting deposition rate of low carbon steel using Response Surface Methodology (RSM). 30 sets of experiments were done, adopting the central composite experimental design. The tungsten inert gas welding equipment was used to produce the welded joints. Argon gas was supplied to the welding process to shield the weld from atmospheric interference. Mild steel coupons measuring 60 × 40 × 10 mm was used for the experiments. The results obtained show that the voltage and current have very strong influence on the deposition rate. The models developed possess a variance inflation factor of 1. And P-value is less than 0.05, indicating that the model is significant. The models also possessed a high goodness of fit with R2 (Coefficient of determination) values of 91%. The model produced numerically obtained optimal solution of current of 160.00 Amp, voltage of 20 volts and a gas flow rate of 17 L/min produces a welded material having deposition rate of 0.4637 kg/hr. This solution was selected by design expert as the optimal solution with a desirability value of 98.8%. A weld simulation using the optimum value obtained produced a weld with good quality.
文摘The purchasement and development as well as the benefit of utilization for the large equipment in universities of China are analyzed in this paper, the paper in dicates that in utilization of large equipment the contradictions such as urgency and necessity for the purchasement and development of large equipment and serious waste in resources since inadequacy of annual utilization rate of large equipment are existed, it also raises that the key step of giving full play to the benefit of large equipment is to strengthen management and development after the equipment are purchased, the paper regards through stressing standardized management and maintenance、opening the laboratory、improving the functions of equipment、renovating technology、fully examining and scientifically deciding before purchasement, the investment benefit for the large equipment can be raised effectively.
基金supported by the National Key Research and Development Project(2018YFB1700802)the National Natural Science Foundation of China(72071206)the Science and Technology Innovation Plan of Hunan Province(2020RC4046).
文摘The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network.