期刊文献+
共找到9,071篇文章
< 1 2 250 >
每页显示 20 50 100
Working condition recognition of sucker rod pumping system based on 4-segment time-frequency signature matrix and deep learning
1
作者 Yun-Peng He Hai-Bo Cheng +4 位作者 Peng Zeng Chuan-Zhi Zang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期641-653,共13页
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff... High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS. 展开更多
关键词 Sucker-rod pumping system Dynamometer card working condition recognition Deep learning Time-frequency signature Time-frequency signature matrix
下载PDF
The Impact of Industry-Education Integration on College Students’ Motivation to Learn English under the TPACK Framework
2
作者 Xiaochao Yao 《Journal of Contemporary Educational Research》 2024年第8期181-187,共7页
This paper explores the impact of industry-education integration on students’motivation in college English courses under the TPACK(Technological Pedagogical Content Knowledge)framework using a comprehensive approach ... This paper explores the impact of industry-education integration on students’motivation in college English courses under the TPACK(Technological Pedagogical Content Knowledge)framework using a comprehensive approach combining quantitative and qualitative methods.Quantitative data analysis indicates a significant positive correlation between the perception of industry-education integration and the level of student learning motivation.There is also a clear association between the perception scores of TPACK framework integration and learning motivation.Qualitative data analysis reveals students’positive experiences and recognition of the TPACK framework integration in practical application projects.The study concludes that industry-education integration and the TPACK framework play a crucial role in enhancing students’learning motivation.It suggests optimizing teaching practices through faculty training,designing practical application projects,and promoting student interaction.This comprehensive analysis provides substantial guidance for the future development of English courses. 展开更多
关键词 Industry-education integration TPACK framework learning motivation English learning
下载PDF
Navigating a Change:An In-depth Analysis of the National Education Policy’s Impact on Learning and Development
3
作者 Ujjvala Kanungo Sandra Satheesh Stuti Mehra 《Journalism and Mass Communication》 2024年第4期241-259,共19页
The patterns and trends in formal higher education are changing.As world economy is moving towards a knowledge based economy,the needs and requirements of formal higher education are also changing.Countries are curren... The patterns and trends in formal higher education are changing.As world economy is moving towards a knowledge based economy,the needs and requirements of formal higher education are also changing.Countries are currently reevaluating their options of formalizing their growing education sector by drafting new education policy that aims to meet the demands of this futuristic knowledge based and technology driven economy with involvement of Artificial Intelligence and Machine Learning(AIML).Factors addressing core competence of employability,holistic development and attainment of skills are the new mantras of evolving modern day’s economy.To be in sync with such demand,requirement,and challenges,the Indian government took a significant step in drafting a New Education Policy popularly known as‘NEP 2020’.This paper makes an attempt to analyze the significant characteristics and dimensions of this NEP 2020 by undertaking a survey among stakeholders mostly students to arrive at certain key findings such as inducing centric,employable,skillful,and holistic development of students attaining such higher education.It also points out some of the implementation issues which require lead time to be adjusted with the system. 展开更多
关键词 NEP2020 holistic education technology integration learning
下载PDF
Formulation of Work-Study Combined and Result-Oriented Integrated Curriculum Standards
4
作者 Lianfang LI Chunhua DU +2 位作者 Fen YANG Yun LI Yanfei NIU 《Medicinal Plant》 2024年第3期79-83,共5页
According to the Annex Technical Regulations for Integrated Curriculum Development(Trial)in Document No.30 of the General Office of the Ministry of Human Resources and Social Security(2012),this paper studies the form... According to the Annex Technical Regulations for Integrated Curriculum Development(Trial)in Document No.30 of the General Office of the Ministry of Human Resources and Social Security(2012),this paper studies the formulation of the curriculum standards for the integration of Chinese medicinal materials production.We focus on the formulation ideas of the curriculum standards for the integration of Chinese medicinal materials production,the formulation process of the curriculum standards for the integration of Chinese medicinal materials production,including the description of typical work tasks,the determination of curriculum objectives,the analysis of study content,the description of referential study tasks,teaching implementation suggestions,assessment and evaluation suggestions,which can provide a reference for the development and research of other related integrated courses. 展开更多
关键词 integration of work and STUDY work process Curriculum STandARDS Production of Chinese MEDICINAL materials Typical work TASKS REFERENTIAL STUDY TASKS
下载PDF
The Role of Music in Multicultural Education:A Tool for Promoting Cultural Understanding and Inclusion
5
作者 GONG Xinyi 《Cultural and Religious Studies》 2024年第9期601-605,共5页
In this essay,it will be examined how music can be a powerful tool in multicultural education in promoting humanity and cultural sensitivity.As classroom diversity increases,the challenge lies with educators to ensure... In this essay,it will be examined how music can be a powerful tool in multicultural education in promoting humanity and cultural sensitivity.As classroom diversity increases,the challenge lies with educators to ensure that an equal and appropriate learning environment for all students with cultural sensitivity is maintained.To address this problem,therefore,the study explores how music may be effectively incorporated into intercultural education approaches.This paper has evidence that music is a language that has transcended cultures and promotes tolerance,appreciation,and acceptance of diversity through a synthesis of literature and examples.Several implications posit that music can make people feel they belong,enhance the relations of people from diverse cultures,and provide a practical way of learning about other cultures.The potential of music as a tool to engage social justice issues and liberate oppressed groups is also discussed in this research.It exists,but with caution to cultural appropriation and stereotyping of students,thus requiring educators to be sensitive and socially-apperceived on the best practice ways on how to integrate music into classrooms.The end explains how music helps in nurturing a generation of embracing the world,more sensitive and more inclined to the happenings in society to create a society that will be more sensitive and tolerant with the growing society which is diversifying.Therefore,the current article recommends further exploration and development of music-facilitated/inclined pedagogy of ME in hopefully enhancing cultural consciousness/sensitivity and fostering more social integration. 展开更多
关键词 multicultural education music integration cultural understanding inclusive learning diversity social justice cultural competence EMPATHY cross-cultural relationships experiential learning
下载PDF
Innovation and Practice of Teaching Methods in Digital and Adaptive Learning:Taking Communication Engineering Major as an Example
6
作者 Xixi Fu Kun Zhang +2 位作者 Xiaomin Jiang Xueya Xia Qian Gao 《Journal of Contemporary Educational Research》 2024年第9期32-39,共8页
This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constrain... This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development. 展开更多
关键词 Digital learning Adaptive learning Communication Engineering Teaching reform Talent cultivation Integrated service platform
下载PDF
Analysis of Traffic Accidents Based on the Integration Model
7
作者 Yanshun Ma Yi Shi +2 位作者 Yihang Song Chenxiao Wu Yuanzhi Liu 《Journal of Electronic Research and Application》 2024年第1期51-59,共9页
To enhance the safety of road traffic operations,this paper proposed a model based on stacking integrated learning utilizing American road traffic accident statistics.Initially,the process involved data cleaning,trans... To enhance the safety of road traffic operations,this paper proposed a model based on stacking integrated learning utilizing American road traffic accident statistics.Initially,the process involved data cleaning,transformation,and normalization.Subsequently,various classification models were constructed,including logistic regression,k-nearest neighbors,gradient boosting,decision trees,AdaBoost,and extra trees models.Evaluation metrics such as accuracy,precision,recall,F1 score,and Hamming loss were employed.Upon analysis,the passive-aggressive classifier model exhibited superior comprehensive indices compared to other models.Based on the model’s output results,an in-depth examination of the factors influencing traffic accidents was conducted.Additionally,measures and suggestions aimed at reducing the incidence of severe traffic accidents were presented.These findings served as a valuable reference for mitigating the occurrence of traffic accidents. 展开更多
关键词 Stacking integrated learning Data analysis Traffic safety
下载PDF
Tasks-Oriented Joint Resource Allocation Scheme for the Internet of Vehicles with Sensing, Communication and Computing Integration 被引量:3
8
作者 Jiujiu Chen Caili Guo +1 位作者 Runtao Lin Chunyan Feng 《China Communications》 SCIE CSCD 2023年第3期27-42,共16页
With the development of artificial intelligence(AI)and 5G technology,the integration of sensing,communication and computing in the Internet of Vehicles(Io V)is becoming a trend.However,the large amount of data transmi... With the development of artificial intelligence(AI)and 5G technology,the integration of sensing,communication and computing in the Internet of Vehicles(Io V)is becoming a trend.However,the large amount of data transmission and the computing requirements of intelligent tasks lead to the complex resource management problems.In view of the above challenges,this paper proposes a tasks-oriented joint resource allocation scheme(TOJRAS)in the scenario of Io V.First,this paper proposes a system model with sensing,communication,and computing integration for multiple intelligent tasks with different requirements in the Io V.Secondly,joint resource allocation problems for real-time tasks and delay-tolerant tasks in the Io V are constructed respectively,including communication,computing and caching resources.Thirdly,a distributed deep Q-network(DDQN)based algorithm is proposed to solve the optimization problems,and the convergence and complexity of the algorithm are discussed.Finally,the experimental results based on real data sets verify the performance advantages of the proposed resource allocation scheme,compared to the existing ones.The exploration efficiency of our proposed DDQN-based algorithm is improved by at least about 5%,and our proposed resource allocation scheme improves the m AP performance by about 0.15 under resource constraints. 展开更多
关键词 IoV resource allocation tasks-oriented communications sensing communication and com-puting integration deep reinforcement learning
下载PDF
Few-shot working condition recognition of a sucker-rod pumping system based on a 4-dimensional time-frequency signature and meta-learning convolutional shrinkage neural network 被引量:1
9
作者 Yun-Peng He Chuan-Zhi Zang +4 位作者 Peng Zeng Ming-Xin Wang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1142-1154,共13页
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le... The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions. 展开更多
关键词 Few-shot learning Indicator diagram META-learning Soft thresholding Sucker-rod pumping system Time–frequency signature working condition recognition
下载PDF
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
10
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 Deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed Neural Networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
下载PDF
Bloody Mahjong playing strategy based on the integration of deep learning and XGBoost 被引量:4
11
作者 Shijing Gao Shuqin Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第1期95-106,共12页
Bloody Mahjong is a kind of mahjong.It is very popular in China in recent years.It not only has the characteristics of mahjong's conventional state space,huge hidden information,complicated rules,and large randomn... Bloody Mahjong is a kind of mahjong.It is very popular in China in recent years.It not only has the characteristics of mahjong's conventional state space,huge hidden information,complicated rules,and large randomness of hand cards but also has special rules such as Change three,Hu must lack at least one suit,and Continue playing after Hu.These rules increase the difficulty of research.These special rules are used as the input of the deep learning DenseNet model.DenseNet is used to extract the Mahjong situation features.The learned features are used as the input of the classification algorithm XGBoost,and then the XGBoost algorithm is used to derive the card strategy.Experiments show that the fusion model of deep learning and XGBoost proposed in this paper has higher accuracy than the single model using only one of them in the case of highdimensional sparse features.In the case of fewer training rounds,accuracy of the model can still reach 83%.In the games against real people,it plays like human. 展开更多
关键词 BLOOD learning integration
下载PDF
Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges 被引量:2
12
作者 Yang Guo Liying Sun +3 位作者 Wenyao Zhong Nan Zhang Zongxuan Zhao Wen Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期663-670,共8页
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p... Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies. 展开更多
关键词 artificial intelligence artificial prosthesis medical-industrial integration brain-machine interface deep learning machine learning networked hand prosthesis neural interface neural network neural regeneration peripheral nerve
下载PDF
An Intelligent Diagnosis Method of the Working Conditions in Sucker-Rod Pump Wells Based on Convolutional Neural Networks and Transfer Learning
13
作者 Ruichao Zhang Liqiang Wang Dechun Chen 《Energy Engineering》 EI 2021年第4期1069-1082,共14页
In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump... In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets. 展开更多
关键词 Sucker-rod pump well dynamometer card convolutional neural network transfer learning working condition diagnosis
下载PDF
Under "Integration of Doing, Learning and Teaching", Research on the Project-Based Teaching Innovation of "Landscape Planning and Design"
14
作者 Peiming Du Minghua Lu 《Journal of Educational Theory and Management》 2017年第1期60-64,共5页
Based on the research on the project course theory of "integration of theory and practice" in higher vocational education and the analysis of practical teaching in colleges and universities at home and abroa... Based on the research on the project course theory of "integration of theory and practice" in higher vocational education and the analysis of practical teaching in colleges and universities at home and abroad, combined with literature research, case analysis, system theory and other research methods, the project-based teaching goal, model, content and means of "integration of doing, learning and teaching" in higher vocational education is explored, and the project-based teaching model of "Landscape Planning and Design" is discussed combined with the application of information-based teaching methods. So as to provide references for carrying out the project-based teaching in similar courses in higher vocational colleges and really achieve docking the actual post requirements with the course to provide the basis for achieving the purpose of cultivating skilled talents in higher vocational education. 展开更多
关键词 integration of DOING learning and TEACHING LandSCAPE planning and design PROJECT-BASED RESEARCH on TEACHING innovation
下载PDF
Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
15
作者 Ying Su Morgan C.Wang Shuai Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3529-3549,共21页
Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically ... Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically relies on expert input and necessitates substantial manual involvement.This manual effort spans model development,feature engineering,hyper-parameter tuning,and the intricate construction of time series models.The complexity of these tasks renders complete automation unfeasible,as they inherently demand human intervention at multiple junctures.To surmount these challenges,this article proposes leveraging Long Short-Term Memory,which is the variant of Recurrent Neural Networks,harnessing memory cells and gating mechanisms to facilitate long-term time series prediction.However,forecasting accuracy by particular neural network and traditional models can degrade significantly,when addressing long-term time-series tasks.Therefore,our research demonstrates that this innovative approach outperforms the traditional Autoregressive Integrated Moving Average(ARIMA)method in forecasting long-term univariate time series.ARIMA is a high-quality and competitive model in time series prediction,and yet it requires significant preprocessing efforts.Using multiple accuracy metrics,we have evaluated both ARIMA and proposed method on the simulated time-series data and real data in both short and long term.Furthermore,our findings indicate its superiority over alternative network architectures,including Fully Connected Neural Networks,Convolutional Neural Networks,and Nonpooling Convolutional Neural Networks.Our AutoML approach enables non-professional to attain highly accurate and effective time series forecasting,and can be widely applied to various domains,particularly in business and finance. 展开更多
关键词 Automated machine learning autoregressive integrated moving average neural networks time series analysis
下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder
16
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
下载PDF
Computational intelligence interception guidance law using online off-policy integral reinforcement learning
17
作者 WANG Qi LIAO Zhizhong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1042-1052,共11页
Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f... Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios. 展开更多
关键词 two-person zero-sum differential games Hamilton–Jacobi–Isaacs(HJI)equation off-policy integral reinforcement learning(IRL) online learning computational intelligence inter-ception guidance(CIIG)law
下载PDF
An integrated machine learning model for accurate and robust prediction of superconducting critical temperature 被引量:1
18
作者 Jingzi Zhang Ke Zhang +8 位作者 Shaomeng Xu Yi Li Chengquan Zhong Mengkun Zhao Hua-Jun Qiu Mingyang Qin X.-D.Xiang Kailong Hu Xi Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期232-239,I0007,共9页
Discovering new superconductors via traditional trial-and-error experimental approaches is apparently a time-consuming process,and the correlations between the critical temperature(Tc) and material features are still ... Discovering new superconductors via traditional trial-and-error experimental approaches is apparently a time-consuming process,and the correlations between the critical temperature(Tc) and material features are still obscure.The rise of machine learning(ML) technology provides new opportunities to speed up inefficient exploration processes,and could potentially uncover new hints on the unclear correlations.In this work,we utilize open-source materials data,ML models,and data mining methods to explore the correlation between the chemical features and Tcvalues of superconducting materials.To further improve the prediction accuracy,a new model is created by integrating three basic algorithms,showing an enhanced accuracy with the coefficient of determination(R2) score of 95.9 % and root mean square error(RMSE) of 6.3 K.The average marginal contributions of material features towards Tcvalues are estimated to determine the importance of various features during prediction processes.The results suggest that the range thermal conductivity plays a critical role in Tcprediction among all element features.Furthermore,the integrated ML model is utilized to screen out potential twenty superconducting materials with Tcvalues beyond 50.0 K.This study provides insights towards Tcprediction to accelerate the exploration of potential high-Tcsuperconductors. 展开更多
关键词 SUPERCONDUCTORS Integrated machine learning Superconducting critical temperature
下载PDF
Sensing and Communication Integrated Fast Neighbor Discovery for UAV Networks
19
作者 WEI Zhiqing ZHANG Yongji +1 位作者 JI Danna LI Chenfei 《ZTE Communications》 2024年第3期69-82,共14页
In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communicati... In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms. 展开更多
关键词 unmanned aerial vehicle networks neighbor discovery integrated sensing and communication reinforcement learning Kalman filter
下载PDF
On the Integrated Learning of English and Law
20
作者 杜朝明 《英语广场(学术研究)》 2012年第5期47-48,共2页
This paper centers on the integrated learning of English and law in China.Firstly,it outlines the importance of English in the solution of the ever increasing legal disputes between China and the outside world,which i... This paper centers on the integrated learning of English and law in China.Firstly,it outlines the importance of English in the solution of the ever increasing legal disputes between China and the outside world,which inevitably involves an integrated learning of English and law.Secondly,it points out that the content of legal English reflects a combination of legal knowledge and English skills.Thirdly,it expounds on the difficulties that Chinese English majors are facing in the process of learning English and law simultaneously and furnishes some practical suggestions. 展开更多
关键词 integrated learning of English and law CONTENT DIFFICULTY SUGGESTION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部