期刊文献+
共找到95,823篇文章
< 1 2 250 >
每页显示 20 50 100
STABILITY OF THE RAREFACTION WAVE IN THE SINGULAR LIMIT OF A SHARP INTERFACE PROBLEM FOR THE COMPRESSIBLE NAVIER-STOKES/ALLEN-CAHN SYSTEM
1
作者 Yunkun CHEN Bin HUANG Xiaoding SHI 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1507-1523,共17页
This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy... This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method. 展开更多
关键词 compressible Navier-Stokes equations Allen-Cahn equation rarefaction wave sharp interface limit STABILITY
下载PDF
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:1
2
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode interface conductive network Ionic transport Mechanical stability
下载PDF
Numerical parametric study on the influence of location and inclination of large-scale asperities on the shear strength of concreterock interfaces of small buttress dams 被引量:1
3
作者 Dipen Bista Adrian Ulfberg +3 位作者 Leif Lia Jaime Gonzalez-Libreros Fredrik Johansson Gabriel Sas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4319-4329,共11页
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre... When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material. 展开更多
关键词 Concrete dam Buttress dam SLIDING Shear strength Concrete-rock interface Asperity inclination Asperity location
下载PDF
A 3D In-vitro model of the human dentine interface shows long-range osteoinduction from the dentine surface
4
作者 William Macalester Asme Boussahel +4 位作者 Rafael O.Moreno-Tortolero Mark R.Shannon Nicola West Darryl Hill Adam Perriman 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第2期225-237,共13页
Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the or... Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering,exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems,which will impact on cell fate and subsequent treatment efficacy.Herein,we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells(hMSCs)encapsulated in a microporous hydrogel bioink.We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs,and that both dentine andβ-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface,which is distal to the gel-substrate interface.Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models. 展开更多
关键词 interface DEN SURFACE
下载PDF
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams
5
作者 Huaqiang Fu Renqiang Fang +7 位作者 Chao Tian Wei Qian Shiya Cao Ziran Zhang Xiaoxi Xu Chuang Yao Zhe Wang Daping He 《Nano Research》 SCIE EI CSCD 2024年第11期9293-9299,共7页
High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (k ⊥), bu... High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (k ⊥), but their excessively high content or intrinsic rigidness deteriorate TIMs softness, leading to worsening for thermal contact resistance (R contact). In this study, 2D graphene materials are fabricated into lightweight and soft graphene foams (GFs) with high-orientation, acting as vertical filler frameworks to optimize the k ⊥ and R contact for vertical GF (VGF) TIMs. The VGF-TIM has a high k ⊥ of 47.9 W·m^(−1)·K^(−1) at a low graphene content of 15.5 wt.%. Due to the softness and low filler contents of GFs, the VGF-TIM exhibits a low compressive module (4.2 MPa), demonstrating excellent compressibility. The resulting TIM exhibit a low contact resistance of 24.4 K·mm2·W^(−1), demonstrating 185.1% higher cooling efficiency in practical heat dissipating scenario compared to commercial advanced TIMs. This work provides guidelines for the design of advanced TIMs and their applications in thermal management. 展开更多
关键词 GRAPHENE foam thermal resistance thermal conductivity thermal interface materials
原文传递
The interface structure and property of magnesium matrix composites:A review
6
作者 Hongwei Xiong Lidong Gu +7 位作者 Jingya Wang Liping Zhou Tao Ying Shiwei Wang Haitao Zhou Jianbo Li Yang Gao Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2595-2623,共29页
Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts ... Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts as a“bridge”between the matrix and reinforcement,playing crucial roles in critical processes such as load transfer,failure behavior,and carrier transport.A deep understanding of the interfacial structures,properties,and effects holds paramount significance in the study of composites.This paper presents a comprehensive review of prior researches related to the interface of Mg matrix composites.Firstly,the different interfacial structures and interaction mechanisms encompassing mechanical,physical,and chemical bonding are introduced.Subsequently,the interfacial mechanical properties and their influence on the overall properties are discussed.Finally,the paper addresses diverse interface modification methods including matrix alloying and reinforcement surface treatment. 展开更多
关键词 Mg matrix composites interface interfacial strength interfacial modification
下载PDF
Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
7
作者 王秋辰 黄昱力 +3 位作者 许晶 禹习谦 李泓 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期117-126,共10页
Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid ... Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid electrolyte interphase(SEI)formation and particle pulverization.However,major challenges arise for Si anodes in SSBs at elevated temperatures.In this work,the failure mechanisms of Si-Li_(6)PS_(5)Cl(LPSC)composite anodes above 80℃are thoroughly investigated from the perspectives of interface stability and(electro)chemo-mechanical effect.The chemistry and growth kinetics of Lix Si|LPSC interphase are demonstrated by combining electrochemical,chemical and computational characterizations.Si and/or Si–P compound formed at Lix Si|LPSC interface prove to be detrimental to interface stability at high temperatures.On the other hand,excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes.This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs. 展开更多
关键词 sulfide electrolytes silicon anodes interface stability degradation kinetics all-solid-state batteries
下载PDF
In-situ thermal Raman mapping and stress analysis of CNT/CF/epoxy interfaces
8
作者 HE Jing-zong CHEN Shi +2 位作者 MA Zheng-kun LU Yong-gen WU Qi-lin 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期703-714,共12页
A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed u... A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology. 展开更多
关键词 thermal Raman mapping Stress distribution Carbon fiber Carbon nanotube interface
下载PDF
Alleviating the sluggish kinetics of all-solid-state batteries via cathode single-crystallization and multi-functional interface modification
9
作者 Wen-Zhe Liu Xin-Hai Meng +4 位作者 Zi-Yi Zhou Qiang Zheng Ji-Lei Shi Yue Gong Yu-Guo Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期123-133,共11页
The application of Li-rich Mn-based cathodes, the most promising candidates for high-energy-density Liion batteries, in all-solid-state batteries can further enhance the safety and stability of battery systems.However... The application of Li-rich Mn-based cathodes, the most promising candidates for high-energy-density Liion batteries, in all-solid-state batteries can further enhance the safety and stability of battery systems.However, the utilization of high-capacity Li-rich cathodes has been limited by sluggish kinetics and severe interfacial issues in all-solid-state batteries. Here, a multi-functional interface modification strategy involving dispersed submicron single-crystal structure and multi-functional surface modification layer obtained through in-situ interfacial chemical reactions was designed to improve the electrochemical performance of Li-rich Mn-based cathodes in all-solid-state batteries. The design of submicron single-crystal structure promotes the interface contact between the cathode particles and the solid-state electrolyte,and thus constructs a more complete ion and electron conductive network in the composite cathode.Furthermore, the Li-gradient layer and the lithium molybdate coating layer constructed on the surface of single-crystal Li-rich particles accelerate the transport of Li ions at the interface, suppress the side reactions between cathodes and electrolyte, and inhibit the oxygen release on the cathode surface. The optimized Li-rich cathode materials exhibit excellent electrochemical performance in halide all-solid-state batteries. This study emphasizes the vital importance of reaction kinetics and interfacial stability of Lirich cathodes in all-solid-state batteries and provides a facile modification strategy to enhance the electrochemical performance of all-solid-state batteries based on Li-rich cathodes. 展开更多
关键词 All-solid-state Li-ion batteries Li-rich Mn-based cathode materials KINETICS interface Anion redox
下载PDF
Averaged Dynamics of Fluids near the Oscillating Interface in a Hele-Shaw Cell
10
作者 Anastasia Bushueva Olga Vlasova Denis Polezhaev 《Fluid Dynamics & Materials Processing》 EI 2024年第4期847-857,共11页
The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with inte... The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV). 展开更多
关键词 Hele-Shaw cell OSCILLATIONS steady flow miscible fluids immiscible fluids interface
下载PDF
Influence of heat input on the microhardness and microstructure of the welding interface between nickel-based alloy and low-alloy steel
11
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第3期33-38,共6页
The evolution of microstructure and local properties near the welding interface is essential for the service safety of dissimilar metal welded joints between nickel-based alloy(NA) and low-alloy steel(LA).In this work... The evolution of microstructure and local properties near the welding interface is essential for the service safety of dissimilar metal welded joints between nickel-based alloy(NA) and low-alloy steel(LA).In this work,NA filler metal was deposited on LA substrate under different heat inputs by tungsten inert gas(TIG) welding.Microstructural characterization and microhardness tests were carried out near the prepared cladding interfaces.Optical and scanning electron microscopes show the lack of evident hardening transition layer along the welding interface.As the heat input increases,the mean hardness of the deposited layer also increases remarkably due to the rising dilution rate.Microstructural characterization shows a significant composition gradient across the cladding interface,but the diffusion gradient is limited to a small range.Under high heat input,a planar grain zone is generated along the interface due to the large temperature gradient across the interface region. 展开更多
关键词 welding interface heat input MICROSTRUCTURE MICROHARDNESS
下载PDF
Theoretical investigation on axial cyclic performance of monopile in sands using interface constitutive models
12
作者 Pan Zhou Jingpei Li +2 位作者 Kaoshan Dai Stefan Vogt Seyedmohsen Miraei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2645-2662,共18页
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c... Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses. 展开更多
关键词 PILES Cyclic degradation Load-transfer models interface constitutive model Semi-analytical solution Model tests
下载PDF
Influence of heat input on microhardness and microstructure across the welding interface between stainless steel and low alloy steel
13
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第1期14-21,共8页
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl... The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects. 展开更多
关键词 welding interface transition layer heat input MICROSTRUCTURE hardness
下载PDF
Analyzing the surface passivity effect of germanium oxynitride:a comprehensive approach through first principles simulation and interface state density
14
作者 Sheng-Jie Du Xiu-Xia Li +8 位作者 Yang Tian Yuan-Yuan Liu Ke Jia Zhong-Zheng Tang Jian-Ping Cheng Zhi Deng Yu-Lan Li Zheng-Cao Li Sha-Sha Lv 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期74-84,共11页
High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achiev... High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents. 展开更多
关键词 Surface passivation High purity germanium detector Germanium nitrogen oxide interface state density
下载PDF
Understanding the dehydrogenation properties of Mg(0001)/MgH_(2)(110)interface from first principles
15
作者 Jianchuan Wang Bo Han +3 位作者 Zhiquan Zeng Shiyi Wen Fen Xu Yong Du 《Materials Reports(Energy)》 EI 2024年第1期89-94,共6页
Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may pl... Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may play a key role in the further dehydrogenation process.In this work,first-principles calculations have been used to understand the dehydrogenation properties of the Mg(0001)/MgH_(2)(110) interface.It is found that the Mg(0001)/MgH_(2)(110) interface can weaken the Mg-H bond.The removal energies for hydrogen atoms in the interface zone are significantly lower compared to those of bulk MgH_(2).In terms of H mobility,hydrogen diffusion within the interface as well as into the Mg matrix is considered.The calculated energy barriers reveal that the migration of hydrogen atoms in the interface zone is easier than that in the bulk MgH_(2).Based on the hydrogen removal energies and diffusion barriers,we conclude that the formation of the Mg(0001)/MgH_(2)(110) interface facilitates the dehydrogenation process of magnesium hydride. 展开更多
关键词 Magnesium hydrides First-principles calculation Hydrogen storage materials interface Hydrogen desorption
下载PDF
Electro-assisted photocatalytic reduction of CO_(2) in ambient air using Ag/TNTAs at the gas-solid interface
16
作者 Feng Yue Zhaoya Fan +7 位作者 Cong Li Yang Meng Shuo Zhang Mengke Shi Minghua Wang Mario Berrettoni Jun Li Hongzhong Zhang 《Materials Reports(Energy)》 EI 2024年第2期71-82,共12页
The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic s... The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic system with dual compartments and interfaces,and coated Ag nanoparticles on the titanium nanotube arrays(TNTAs)by polydopamine modification.In the absence of sacrificial agent and alkali absorption liquid conditions,the stable,efficient and highly selective conversion of CO_(2) to CO at the gas-solid interface in ambient air was realized by photoelectric synergy.Specifically,with the assistance of potential,the CO formation rates reached 194.9μmol h^(−1) m^(−2) and 103.9μmol h^(−1) m^(−2) under ultraviolet and visible light irradiation,respectively;the corresponding CO_(2) conversion rates in ambient air were 30%and 16%,respectively.The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect.Additionally,the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate.This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle. 展开更多
关键词 Electro-assisted photocatalytic Gas-solid interface Ambient air P–N heterojunction Practical applications
下载PDF
Review on the Usage of Synchronous and Asynchronous FIFOs in Digital Systems Design
17
作者 Dongwei Hu Yuejun Lei Linan Wang 《Engineering(科研)》 2024年第3期61-82,共22页
First-Input-First-Output (FIFO) buffers are extensively used in contemporary digital processors and System-on-Chips (SoC). There are synchronous FIFOs and asycnrhonous FIFOs. And different sized FIFOs should be implem... First-Input-First-Output (FIFO) buffers are extensively used in contemporary digital processors and System-on-Chips (SoC). There are synchronous FIFOs and asycnrhonous FIFOs. And different sized FIFOs should be implemented in different ways. FIFOs are used not only for the pipeline design within a processor, for the inter-processor communication networks, for example Network-on-Chips (NoCs), but also for the peripherals and the clock domain crossing at the whole SoC level. In this paper, we review the interface, the circuit implementation, and the various usages of FIFOs in various levels of the digital design. We can find that the usage of FIFOs could greatly facilitate the signal storage, signal decoupling, signal transfer, power domain separation and power domain crossing in digital systems. We hope that more attentions are paid to the usages of synchronous and asynchronous FIFOs and more sophististicated usages are discovered by the digital design communities. 展开更多
关键词 First-Input-First-Output system-ON-CHIP NETWORK-ON-CHIP Advanced eXtensible interface ASYNCHRONOUS
下载PDF
Design of Cold-Junction Compensation and Disconnection Detection Circuits of Various Thermocouples and Implementation of Multi-Channel Interfaces Using Them-A Secondary Publication
18
作者 Hyeong-Woo Cha 《Journal of Electronic Research and Application》 2024年第1期93-105,共13页
Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC... Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain. 展开更多
关键词 R-type thermocouple(TC) Cold-junction compensation(CJC) TC disconnection detection Multi-channel interface circuit Sensor interface
下载PDF
Research Progress in the Failure Behavior onthe Interface of Thermal Barrier Coatings
19
作者 Shiwei Xie Danni Deng 《Expert Review of Chinese Chemical》 2024年第2期43-47,共5页
This paper mainly introduces the research progress on interface failure behavior in high-temperature alloy surface thermal barrier coating systems.The degradation failure and structural evolution behavior during high-... This paper mainly introduces the research progress on interface failure behavior in high-temperature alloy surface thermal barrier coating systems.The degradation failure and structural evolution behavior during high-temperature service were analyzed for the matrix/bonding layer interface,bonding layer/TGO interface,and TGO/ceramic layer interface in thermal barrier coatings.The research focus and direction that affect the interface performance of thermal barrier coatings were proposed. 展开更多
关键词 thermal barrier coating interface failure structural evolution
下载PDF
Comparison of the interface reaction behaviors of CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) solid-state systems based on the diffusion couple method 被引量:4
20
作者 Jing Wen Hongyan Sun +3 位作者 Tao Jiang Bojian Chen Fangfang Li Mengxia Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期834-843,共10页
The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting p... The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese. 展开更多
关键词 solid-state reaction reaction regularity of calcium and vanadium reaction regularity of manganese and vanadium diffusion couple method interface reaction behavior
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部