Toxic substances released as a result of leaching from painted surfaces to the aquatic environment affect both fouling organisms and “non-target” biota. Artemia fransiscana nauplii have been considered a useful test...Toxic substances released as a result of leaching from painted surfaces to the aquatic environment affect both fouling organisms and “non-target” biota. Artemia fransiscana nauplii have been considered a useful test system for the examination of toxicity for antifouling paints. In this study, we examined the effect of four “tin free” self-polishing copolymer (SPC) antifouling paints on the larval development of Artemia nauplii. Based on the L(S/V)50 values the order of toxicity of the antifouling paints was: ANTI F > SHARKSKIN > OCEAN T/F > MICRON. Furthermore, the body size of Artemia nauplii was significantly affected at lethal and above lethal L(S/V)5024h values. The body size of 48 h-aged nauplii exposed for the last 24 hours to each of the four SPC antifouling paints was significantly lower than that of the 48 h-aged controls (0.88 ± 0.030 mm). In addition, the body size of 72 h-aged nauplii maintained for the last 24 hours to pure synthetic seawater after exposure for 24 hours to each of the four SPC antifouling paints was significantly lower than that of the 72 h-aged controls (0.96 ±0.027 mm). Overall, the SPCs examined here were substantially toxic to Artemia nauplii, but with different toxicities and modes of action, as a result of the synergistic action of distinct components of the antifouling paints.展开更多
Manipulating the self-assembly of transition metal telluride nanocrystals(NCs) creates opportunities for exploring new properties and device applications. Iron ditelluride(FeTe2) has recently emerged as a new class of...Manipulating the self-assembly of transition metal telluride nanocrystals(NCs) creates opportunities for exploring new properties and device applications. Iron ditelluride(FeTe2) has recently emerged as a new class of magnetic semiconductor with three-dimensional(3D) magnetic ordering and narrow band gap structure, yet the self-assembly of FeTe2 NCs has not been achieved. Herein, the tree-like FeTe2 nanoarchitectures with orthorhombic crystal structure have been successfully synthesized by hot-injection solvent thermal approach using phosphine-free Te precursor. The morphology, size, and crystal structure have been investigated using transmission electron microscopy(TEM), high-resolution TEM(HRTEM),and powder x-ray diffraction(XRD). We study the formation process of tree-like FeTe2 NCs according to trace the change of the sample morphology with the reaction time. It was found that the FeTe2 nanoparticles show oriented aggregation and self-assembly behavior with the increase of reaction time, which is attributed to size-dependent magnetism properties of the samples. The magnetic interaction is thought to be the driving force of nanoparticle self-organization.展开更多
Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free em...Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted. Moreover, the influence of mole ratio of BA to MAA, pH value on the oligomer was studied. And the effects of the added amount of oligomer, self-crosslinked monomer and HFBA, mass ratio of BA to MMA, reaction temperature and the initiator on the polymerization technology and the performance of the product, were investigated and optimized. The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR, TEM, MFT and contact angle and water absorption of the latex film. The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows: for preparing the oligomer, tool ratio of BA to MAA is equal to 1.0 : 1.60, and pH value is controlled within the range of 8.0 and 9.0; for preparing fluorocarbon polymer emulsion, the added amount of oligmer[P(BA/MANa)] is 6%; mass ratio of BA to MMA is 40 " 60; the added amount of self-crosslinked monomer is 2%, the added amount of HFBA is 15 %; reaction temperature is 80 ℃; the mixture of potassium persulfate and sodium bisulfite is used as the initiator. The film-forming stability of the fluorocarbon polymer emul- sion and the performance of the latex film, which is prepared with the soap-free emulsion polymerization, are better than that prepared with the conventional emulsion polymerization.展开更多
Transgenic plants, despite a great deal of scientifi c evidences, have induced a number of environmental and consumer concerns for long time because various antibiotic resistance genes, according to common
The main goal of the present work is a unitary approach of the physical origin of the corrections to the magnetic moment of free and bound electron. Based on this approach, estimations of lowest order corrections were...The main goal of the present work is a unitary approach of the physical origin of the corrections to the magnetic moment of free and bound electron. Based on this approach, estimations of lowest order corrections were easily obtained. In the non-relativistic limit, the Dirac electron appears as a distribution of charge and current extended over a region of linear dimension of the order of Compton wavelength, which generates its magnetic moment. The e.m. mass (self-energy) of electron outside this region does not participate to this internal dynamics, and consequently does not contribute to the mass term in the formula of the magnetic moment. This is the physical origin of the small increase of the magnetic moment of free electron compared to the value given by Dirac equation. We give arguments that this physical interpretation is self-consistent with the QED approach. The bound electron being localized, it has kinetic energy which means a mass increase from a relativistic point of view, which determines a magnetic moment decrease (relativistic Breit correction). On the other hand, the e.m. mass of electron decreases at the formation of the bound state due to coulomb interaction with the nucleus. We estimated this e.m. mass decrease of bound electron only in its internal dynamics region, and from it the corresponding increase of the magnetic moment (QED correction). The corrections to the mass value are at the origin of the lowest order corrections to the magnetic moment of free and bound electron.展开更多
A stochastic SIR epidemic dynamic model with distributed-time-delay, for a two-scale dynamic population is derived. The distributed time delay is the varying naturally acquired immunity period of the removal class of ...A stochastic SIR epidemic dynamic model with distributed-time-delay, for a two-scale dynamic population is derived. The distributed time delay is the varying naturally acquired immunity period of the removal class of individuals who have recovered from the infection, and have acquired natural immunity to the disease. We investigate the stochastic asymptotic stability of the disease free equilibrium of the epidemic dynamic model, and verify the impact on the eradication of the disease.展开更多
The porous TiOz film was self-assembled on the surface of electrophoretic-deposited titanate nanoribbon film without the addition of templates by using TiF4 as the precursor. It was found that the hydrolysis of TiF4 w...The porous TiOz film was self-assembled on the surface of electrophoretic-deposited titanate nanoribbon film without the addition of templates by using TiF4 as the precursor. It was found that the hydrolysis of TiF4 was accompanied with the self-assembly processes of TiO2 nanoparticles on the surface of electrophoretic-deposited titanate nanoribbon film, resulting in the formation of porous TiO2 structures. Titanate nanoribbon film was demonstrated to provide the active sites for the effective self-assembly of porous TiO2 nanostructures owing to a large amount of hydroxyl groups. Compared with the nonporous TiO2 film, the prepared porous TiO2 films obviously showed an enhanced photocatalytic activity, which could be attributed to the rapider diffusion and more efficient transport of various reactants and products during photocatalytic reaction in the t^orous structures.展开更多
Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breath...Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of selfgating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed. Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers. The results demonstrate an excellent correlation (P = 0, R 〉 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac (H = 0, P 〉 0.10) and respiratory (H = 0, P 〉 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P 〉 0.90). The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors appear in some subjects while these errors are not found in self-gating signals.展开更多
The motion of a relativistic electron is analyzed in the field configuration consisting of a circular wiggler magnetic field, an axial magnetic field, and the equilibrium self-electric and self-magnetic fields produce...The motion of a relativistic electron is analyzed in the field configuration consisting of a circular wiggler magnetic field, an axial magnetic field, and the equilibrium self-electric and self-magnetic fields produced by the non-neutral electron ring. By generating Poincare surface-of-section maps, it is shown that when the equilibrium self-fields is strong enough, the electron motions become chaotic. Although the realistic circular wiggler magnetic field destroys the inte-grability of the electron motion as the equilibrium self-fields do, the role the latter plays to make the motions become chaotic is stronger than the former does. In addition, the axial magnetic field can restrain the occurrence of the chaoticity.展开更多
The self-assembly of five narrowly distributed novel rod-coil diblock copolymers, poly(styrene-block-(2, 5-bis[4-methoxy-phenyl]oxycarbonyl) styrene) (PS-b-PMPCS), in p-xylene, a selective solvent at room temperature,...The self-assembly of five narrowly distributed novel rod-coil diblock copolymers, poly(styrene-block-(2, 5-bis[4-methoxy-phenyl]oxycarbonyl) styrene) (PS-b-PMPCS), in p-xylene, a selective solvent at room temperature, was studied. Therod-coil copolymers, which have the same PS length but different PMPCS length, were synthesized by 2,2,6,6-tetramethyl-I-piperidinyloxy (TEMPO) mediated living free radical polymerization. The influence of the rod length on the self-assemblymorphology was studied by transmission electron microscopy (TEM). At a concentration of 2.0 mg/mL, those copolymerswith relatively shorter PMPCS length (copolymers 1 and 2) form individual spherical micelles; those with relatively longerPMPCS length (copolymer 3 and 4) form 'pearl chains' coexisting with individual spherical micelles; the ones with longestPMPCS length form 'pearl chains' coexisting with occasionally formed nanofibers. The diameter of all the morphologieswas controlled by the rod length. This gives us a way to govern the self-assembly morphology by altering the length of oneblock in the block copolymer.展开更多
Combining with the technology of self-compacting concrete, self-stressing concrete and concrete-filled steel tube, we can get self-compacting and self-stressing concrete-filled steel tube. In order to study the expans...Combining with the technology of self-compacting concrete, self-stressing concrete and concrete-filled steel tube, we can get self-compacting and self-stressing concrete-filled steel tube. In order to study the expansive mechanism of self-stressing concrete, the continuous observation of 47 days on six specimens was carried on. The specimens have different steel area to concrete area ratio. The expansive process in hoop and axial direction were studied, and the expansive mechanism was discussed too. The experimental results identify that the creep and elastic deformation take a large proportion in effective free expansion. The calculating formulas of self-stress in hoop and axial directions were presented here.展开更多
A novel acrylate inimer, 2-(2-chloroacetyloxy) ethyl acrylate, was prepared by the reaction of 2-hydroxyethyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self-condensing vinyl living ra...A novel acrylate inimer, 2-(2-chloroacetyloxy) ethyl acrylate, was prepared by the reaction of 2-hydroxyethyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self-condensing vinyl living radical polymerization of the inimer was studied and the hyperbranched macromolecules containing ester linkages on their backbone were prepared. All the polymerization products were characterized by 1H NMR. The polymerization degree and the branching parameter were calculated based on the 1H NMR spectra. It has been shown that this inimer exhibits a very distinctive polymerization behavior. Similar to step-growth polymerization, the polymerization degree of the products formed increased exponentially during the early stage of the polymerization, and then the increasing rate slowed down. However, the inimer remained present throughout the polymerization consistent with conventional free radical polymerization. Also, if much longer polymerization time was used, the polymerization system would become gel due to the crosslinking reaction derived from radical-radical recombination. As a result of the unequal reactivity of -CH2Cl and >CHCl, an almost linear product was obtained at a molar ratio of bipy to inimer=0.05, while a relatively high ratio of bipy to inimer 1 favored the formation of the branched structure. The macromolecules formed at a high ratio of bipy to inimer 1 exhibited an excellent solubility in organic solvents such as acetone.展开更多
By taking infinite periodic beams as examples,the mutual variational principle for analyzing the free wave propagation in periodic structures is established and demonstrated through the use of the propaga- tion consta...By taking infinite periodic beams as examples,the mutual variational principle for analyzing the free wave propagation in periodic structures is established and demonstrated through the use of the propaga- tion constant in the present paper,and the corresponding hierarchical finite element formulation is then de- rived.Thus,it provides the numerical analysis of that problem with a firm theoretical basis of variational prin- ciples,with which one may conveniently illustrate the mathematical and physical mechanisms of the wave prop- agation in periodic structures and the relationship with the natural vibration.The solution is discussed and ex- amples are given.展开更多
In the present work the Stochastic generalization of the quantum hydrodynamic analogy (SQHA) is used to obtain the far-from-equilibrium kinetics for a real gas and its fluid phase. In gases and their liquids, interact...In the present work the Stochastic generalization of the quantum hydrodynamic analogy (SQHA) is used to obtain the far-from-equilibrium kinetics for a real gas and its fluid phase. In gases and their liquids, interacting by Lennard-Jones potentials whose mean distance is bigger than the quantum correlation distance and the molecular interaction distance r0, it is possible to define a Fokker-Plank type equation of motion as a function of the mean phase space molecular volume that far-from-equilibrium shows maximizing the dissipation of a part of the generalized SQHA-free energy. In the case of a real gas with no chemical reactions with small temperature gradients, the principle disembogues into the maximum free energy dissipation confirming the experimental outputs of electro-convective instability. In this case, the model shows that the transition to stationary states with higher free energy can happen and that in incompressible fluids, the increase of free energy is almost given by a decrease of entropy leading to the appearance of self-ordered structures. The output of the theory showing that the generation of order via energy dissipation, is more efficient in fluids than in gases, because of their incompressibility, which leads to the reconciliation between physics and biology furnishing the explanation why the life was born in water. The theoretical output also suggests that the search for life out of the earth must consider the possibility to find it in presence of liquid phases different from water.展开更多
The anomalies of electric-magnetic field and self-potential before earthquakes are important precursory phenom-ena. A simulating experiment study on the variations in ultra-low frequency (ULF) magnetic field and self-...The anomalies of electric-magnetic field and self-potential before earthquakes are important precursory phenom-ena. A simulating experiment study on the variations in ultra-low frequency (ULF) magnetic field and self-poten-tial during rock cracking was carried out in a magnetic field-free space. The results revealing in detail the whole process of the occurrences of electric and magnetic anomalies are significant for understanding the microscopic mechanism of ULF electric and magnetic signals. The experiment indicated that at the initial stage the slow changes in strain, self-potential and magnetic field with small amounts appeared firstly near the source of initial cracking, and then extended as the crack developed on. In the time domain, the self-potential anomaly emerged first and ULF magnetic field changes arose then. The shape of the ULF electric and magnetic anomaly varied ob-viously in early-, mid- and late-term of the test. The authors attributed the pulse-like changes of self-potential to the generation and movement of the accumulated electric charges during the cracking caused by charge separation on the crack tips within the sample. While the magnetic pulses of shorter-period at the last stage of the test, may be induced by instantaneous electric current of the accumulated charge during the cracking acceleration. The technical method and the observational results of this experiment are given in detail and the microscopic mechanism of elec-tric and magnetic precursors before earthquake are discussed in the present paper as well.展开更多
The ground-state energy and its derivate of the acoustic polaron in free-standing slab are calculated by using the Huybrechts-like variational approach. The criteria for presence of the selftrapping transition of the ...The ground-state energy and its derivate of the acoustic polaron in free-standing slab are calculated by using the Huybrechts-like variational approach. The criteria for presence of the selftrapping transition of the acoustic polaron in free-standing slabs are determined qualitatively. The critical coupling constant for the discontinuous transition from a quasi-free state to a trapped state of the acoustic polaron in free-standing slabs tends to shift toward the weaker electronphonon coupling with the increasing cutoff wave-vector. Detailed numerical results confirm that the self-trapping transition of holes is expected to occur in the free-standing slabs of wide-bandgap semi-conductors.展开更多
It is well-known that feeling to be a healthy or sick person most probably results from the mind than from the body. We all know healthy people who feel sick and vice versa. We were interested in the health and sickne...It is well-known that feeling to be a healthy or sick person most probably results from the mind than from the body. We all know healthy people who feel sick and vice versa. We were interested in the health and sickness feeling of celiac people, their autorating of these feelings and its conditioning factors as well as their expectations. In this paper we present the results of an inquiry to evaluate these situations. We performed a descriptive, transversal and prospective study for 2 years to groups of celiacs and their families. They received a closed inquiry to be completed before the beginning of the talk. The inquiry included personal data and the co-existence of associated or concomitant (AoC) diseases. Most of the sample’s patients felt to be a healthy person (86.8%). Mothers see their children as healthy and the auto rated criteria is significantly better than the adult celiac person (“t”= -6.024 (p = 0.000)). AoC diseases influenced negatively in the feeling of being healthy and strongly decreased the autorating. Longer time passed on treatment reflects an increase feeling of health and of the autorating. In people with AoC diseases and who feel sick, the increased time of treatment did not show significant differences. People with “gluten sensitivity” felt sicker and auto rated themselves with a lower number than celiacs. Many pediatric gastroenterologists notice that the newly agreed definition of celiac disease, referring it as “autoimmune, chronic, incurable, and multisystemic”, results in a very negative character of the condition which might compromise the future labour of this people as well as their admittance to different health insurance systems.展开更多
文摘Toxic substances released as a result of leaching from painted surfaces to the aquatic environment affect both fouling organisms and “non-target” biota. Artemia fransiscana nauplii have been considered a useful test system for the examination of toxicity for antifouling paints. In this study, we examined the effect of four “tin free” self-polishing copolymer (SPC) antifouling paints on the larval development of Artemia nauplii. Based on the L(S/V)50 values the order of toxicity of the antifouling paints was: ANTI F > SHARKSKIN > OCEAN T/F > MICRON. Furthermore, the body size of Artemia nauplii was significantly affected at lethal and above lethal L(S/V)5024h values. The body size of 48 h-aged nauplii exposed for the last 24 hours to each of the four SPC antifouling paints was significantly lower than that of the 48 h-aged controls (0.88 ± 0.030 mm). In addition, the body size of 72 h-aged nauplii maintained for the last 24 hours to pure synthetic seawater after exposure for 24 hours to each of the four SPC antifouling paints was significantly lower than that of the 72 h-aged controls (0.96 ±0.027 mm). Overall, the SPCs examined here were substantially toxic to Artemia nauplii, but with different toxicities and modes of action, as a result of the synergistic action of distinct components of the antifouling paints.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874027)the China Postdoctoral Science Foundation(Grant Nos.2019T120233 and 2017M621198)
文摘Manipulating the self-assembly of transition metal telluride nanocrystals(NCs) creates opportunities for exploring new properties and device applications. Iron ditelluride(FeTe2) has recently emerged as a new class of magnetic semiconductor with three-dimensional(3D) magnetic ordering and narrow band gap structure, yet the self-assembly of FeTe2 NCs has not been achieved. Herein, the tree-like FeTe2 nanoarchitectures with orthorhombic crystal structure have been successfully synthesized by hot-injection solvent thermal approach using phosphine-free Te precursor. The morphology, size, and crystal structure have been investigated using transmission electron microscopy(TEM), high-resolution TEM(HRTEM),and powder x-ray diffraction(XRD). We study the formation process of tree-like FeTe2 NCs according to trace the change of the sample morphology with the reaction time. It was found that the FeTe2 nanoparticles show oriented aggregation and self-assembly behavior with the increase of reaction time, which is attributed to size-dependent magnetism properties of the samples. The magnetic interaction is thought to be the driving force of nanoparticle self-organization.
基金Funded by the Jiangsu Provincial Creative Fund for Scientific and Tech-nical Small and Medium-size Enterprise
文摘Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted. Moreover, the influence of mole ratio of BA to MAA, pH value on the oligomer was studied. And the effects of the added amount of oligomer, self-crosslinked monomer and HFBA, mass ratio of BA to MMA, reaction temperature and the initiator on the polymerization technology and the performance of the product, were investigated and optimized. The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR, TEM, MFT and contact angle and water absorption of the latex film. The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows: for preparing the oligomer, tool ratio of BA to MAA is equal to 1.0 : 1.60, and pH value is controlled within the range of 8.0 and 9.0; for preparing fluorocarbon polymer emulsion, the added amount of oligmer[P(BA/MANa)] is 6%; mass ratio of BA to MMA is 40 " 60; the added amount of self-crosslinked monomer is 2%, the added amount of HFBA is 15 %; reaction temperature is 80 ℃; the mixture of potassium persulfate and sodium bisulfite is used as the initiator. The film-forming stability of the fluorocarbon polymer emul- sion and the performance of the latex film, which is prepared with the soap-free emulsion polymerization, are better than that prepared with the conventional emulsion polymerization.
基金the National Natural Science Foundation of China (No. 30460081) the Scientific Research Program of the Higher Education Institution of XinJiang (2005).
文摘Transgenic plants, despite a great deal of scientifi c evidences, have induced a number of environmental and consumer concerns for long time because various antibiotic resistance genes, according to common
文摘The main goal of the present work is a unitary approach of the physical origin of the corrections to the magnetic moment of free and bound electron. Based on this approach, estimations of lowest order corrections were easily obtained. In the non-relativistic limit, the Dirac electron appears as a distribution of charge and current extended over a region of linear dimension of the order of Compton wavelength, which generates its magnetic moment. The e.m. mass (self-energy) of electron outside this region does not participate to this internal dynamics, and consequently does not contribute to the mass term in the formula of the magnetic moment. This is the physical origin of the small increase of the magnetic moment of free electron compared to the value given by Dirac equation. We give arguments that this physical interpretation is self-consistent with the QED approach. The bound electron being localized, it has kinetic energy which means a mass increase from a relativistic point of view, which determines a magnetic moment decrease (relativistic Breit correction). On the other hand, the e.m. mass of electron decreases at the formation of the bound state due to coulomb interaction with the nucleus. We estimated this e.m. mass decrease of bound electron only in its internal dynamics region, and from it the corresponding increase of the magnetic moment (QED correction). The corrections to the mass value are at the origin of the lowest order corrections to the magnetic moment of free and bound electron.
文摘A stochastic SIR epidemic dynamic model with distributed-time-delay, for a two-scale dynamic population is derived. The distributed time delay is the varying naturally acquired immunity period of the removal class of individuals who have recovered from the infection, and have acquired natural immunity to the disease. We investigate the stochastic asymptotic stability of the disease free equilibrium of the epidemic dynamic model, and verify the impact on the eradication of the disease.
基金Funded by the National Natural Science Foundation of China (20803055,51102087)the Major Science and Technology Program for Water Pollution Control and Treatment (2009ZX07106-003)the Fundamental Research Funds for the Central Universities (2011-1a-039,2011-1a-043)
文摘The porous TiOz film was self-assembled on the surface of electrophoretic-deposited titanate nanoribbon film without the addition of templates by using TiF4 as the precursor. It was found that the hydrolysis of TiF4 was accompanied with the self-assembly processes of TiO2 nanoparticles on the surface of electrophoretic-deposited titanate nanoribbon film, resulting in the formation of porous TiO2 structures. Titanate nanoribbon film was demonstrated to provide the active sites for the effective self-assembly of porous TiO2 nanostructures owing to a large amount of hydroxyl groups. Compared with the nonporous TiO2 film, the prepared porous TiO2 films obviously showed an enhanced photocatalytic activity, which could be attributed to the rapider diffusion and more efficient transport of various reactants and products during photocatalytic reaction in the t^orous structures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.81501463,61471349,81671853,81571669,and 61671026)the National High Technology Research and Development Program of China(Grant No.2015AA043203)+5 种基金the Natural Science Foundation of Beijing,China(Grant No.7162112)Guangdong Innovative Research Team Program of China(Grant No.2011S013)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2014A030310360 and 2014A0202015028)the Beijing Center for Mathematics and Information Interdisciplinary Sciences,Shenzhen Fundamental Research Program,China(Grant Nos.JCYJ201500731154850923 and JCYJ20140417113430665)Shenzhen High-level Oversea Talent Program,China(Grant No.KQJSCX20160301144248)the Nanshan Technology Research Fund,China(Grant No.KC2014JSQN0001A)
文摘Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of selfgating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed. Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers. The results demonstrate an excellent correlation (P = 0, R 〉 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac (H = 0, P 〉 0.10) and respiratory (H = 0, P 〉 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P 〉 0.90). The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors appear in some subjects while these errors are not found in self-gating signals.
基金Supported by the National Natural Science Foundation of China
文摘The motion of a relativistic electron is analyzed in the field configuration consisting of a circular wiggler magnetic field, an axial magnetic field, and the equilibrium self-electric and self-magnetic fields produced by the non-neutral electron ring. By generating Poincare surface-of-section maps, it is shown that when the equilibrium self-fields is strong enough, the electron motions become chaotic. Although the realistic circular wiggler magnetic field destroys the inte-grability of the electron motion as the equilibrium self-fields do, the role the latter plays to make the motions become chaotic is stronger than the former does. In addition, the axial magnetic field can restrain the occurrence of the chaoticity.
基金The financial support of the National Natural Science Foundation of China (Grants. 29992590-4 and 20134010)
文摘The self-assembly of five narrowly distributed novel rod-coil diblock copolymers, poly(styrene-block-(2, 5-bis[4-methoxy-phenyl]oxycarbonyl) styrene) (PS-b-PMPCS), in p-xylene, a selective solvent at room temperature, was studied. Therod-coil copolymers, which have the same PS length but different PMPCS length, were synthesized by 2,2,6,6-tetramethyl-I-piperidinyloxy (TEMPO) mediated living free radical polymerization. The influence of the rod length on the self-assemblymorphology was studied by transmission electron microscopy (TEM). At a concentration of 2.0 mg/mL, those copolymerswith relatively shorter PMPCS length (copolymers 1 and 2) form individual spherical micelles; those with relatively longerPMPCS length (copolymer 3 and 4) form 'pearl chains' coexisting with individual spherical micelles; the ones with longestPMPCS length form 'pearl chains' coexisting with occasionally formed nanofibers. The diameter of all the morphologieswas controlled by the rod length. This gives us a way to govern the self-assembly morphology by altering the length of oneblock in the block copolymer.
基金the National Natural Science Foundation of China (50578027)
文摘Combining with the technology of self-compacting concrete, self-stressing concrete and concrete-filled steel tube, we can get self-compacting and self-stressing concrete-filled steel tube. In order to study the expansive mechanism of self-stressing concrete, the continuous observation of 47 days on six specimens was carried on. The specimens have different steel area to concrete area ratio. The expansive process in hoop and axial direction were studied, and the expansive mechanism was discussed too. The experimental results identify that the creep and elastic deformation take a large proportion in effective free expansion. The calculating formulas of self-stress in hoop and axial directions were presented here.
基金Supported by the National Natural Science Foundation of China(No. 2 980 40 0 6 ) and the Youth Foundation of Jiangsuprovince(No.BQ980 2 4)
文摘A novel acrylate inimer, 2-(2-chloroacetyloxy) ethyl acrylate, was prepared by the reaction of 2-hydroxyethyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self-condensing vinyl living radical polymerization of the inimer was studied and the hyperbranched macromolecules containing ester linkages on their backbone were prepared. All the polymerization products were characterized by 1H NMR. The polymerization degree and the branching parameter were calculated based on the 1H NMR spectra. It has been shown that this inimer exhibits a very distinctive polymerization behavior. Similar to step-growth polymerization, the polymerization degree of the products formed increased exponentially during the early stage of the polymerization, and then the increasing rate slowed down. However, the inimer remained present throughout the polymerization consistent with conventional free radical polymerization. Also, if much longer polymerization time was used, the polymerization system would become gel due to the crosslinking reaction derived from radical-radical recombination. As a result of the unequal reactivity of -CH2Cl and >CHCl, an almost linear product was obtained at a molar ratio of bipy to inimer=0.05, while a relatively high ratio of bipy to inimer 1 favored the formation of the branched structure. The macromolecules formed at a high ratio of bipy to inimer 1 exhibited an excellent solubility in organic solvents such as acetone.
基金Supported by Doctorate Training Fund of National Education Commission of China
文摘By taking infinite periodic beams as examples,the mutual variational principle for analyzing the free wave propagation in periodic structures is established and demonstrated through the use of the propaga- tion constant in the present paper,and the corresponding hierarchical finite element formulation is then de- rived.Thus,it provides the numerical analysis of that problem with a firm theoretical basis of variational prin- ciples,with which one may conveniently illustrate the mathematical and physical mechanisms of the wave prop- agation in periodic structures and the relationship with the natural vibration.The solution is discussed and ex- amples are given.
文摘In the present work the Stochastic generalization of the quantum hydrodynamic analogy (SQHA) is used to obtain the far-from-equilibrium kinetics for a real gas and its fluid phase. In gases and their liquids, interacting by Lennard-Jones potentials whose mean distance is bigger than the quantum correlation distance and the molecular interaction distance r0, it is possible to define a Fokker-Plank type equation of motion as a function of the mean phase space molecular volume that far-from-equilibrium shows maximizing the dissipation of a part of the generalized SQHA-free energy. In the case of a real gas with no chemical reactions with small temperature gradients, the principle disembogues into the maximum free energy dissipation confirming the experimental outputs of electro-convective instability. In this case, the model shows that the transition to stationary states with higher free energy can happen and that in incompressible fluids, the increase of free energy is almost given by a decrease of entropy leading to the appearance of self-ordered structures. The output of the theory showing that the generation of order via energy dissipation, is more efficient in fluids than in gases, because of their incompressibility, which leads to the reconciliation between physics and biology furnishing the explanation why the life was born in water. The theoretical output also suggests that the search for life out of the earth must consider the possibility to find it in presence of liquid phases different from water.
基金Joint Seismological Science Foundation of China (95-07-434) and the MOST under contract 2001BA601B02.
文摘The anomalies of electric-magnetic field and self-potential before earthquakes are important precursory phenom-ena. A simulating experiment study on the variations in ultra-low frequency (ULF) magnetic field and self-poten-tial during rock cracking was carried out in a magnetic field-free space. The results revealing in detail the whole process of the occurrences of electric and magnetic anomalies are significant for understanding the microscopic mechanism of ULF electric and magnetic signals. The experiment indicated that at the initial stage the slow changes in strain, self-potential and magnetic field with small amounts appeared firstly near the source of initial cracking, and then extended as the crack developed on. In the time domain, the self-potential anomaly emerged first and ULF magnetic field changes arose then. The shape of the ULF electric and magnetic anomaly varied ob-viously in early-, mid- and late-term of the test. The authors attributed the pulse-like changes of self-potential to the generation and movement of the accumulated electric charges during the cracking caused by charge separation on the crack tips within the sample. While the magnetic pulses of shorter-period at the last stage of the test, may be induced by instantaneous electric current of the accumulated charge during the cracking acceleration. The technical method and the observational results of this experiment are given in detail and the microscopic mechanism of elec-tric and magnetic precursors before earthquake are discussed in the present paper as well.
文摘The ground-state energy and its derivate of the acoustic polaron in free-standing slab are calculated by using the Huybrechts-like variational approach. The criteria for presence of the selftrapping transition of the acoustic polaron in free-standing slabs are determined qualitatively. The critical coupling constant for the discontinuous transition from a quasi-free state to a trapped state of the acoustic polaron in free-standing slabs tends to shift toward the weaker electronphonon coupling with the increasing cutoff wave-vector. Detailed numerical results confirm that the self-trapping transition of holes is expected to occur in the free-standing slabs of wide-bandgap semi-conductors.
文摘It is well-known that feeling to be a healthy or sick person most probably results from the mind than from the body. We all know healthy people who feel sick and vice versa. We were interested in the health and sickness feeling of celiac people, their autorating of these feelings and its conditioning factors as well as their expectations. In this paper we present the results of an inquiry to evaluate these situations. We performed a descriptive, transversal and prospective study for 2 years to groups of celiacs and their families. They received a closed inquiry to be completed before the beginning of the talk. The inquiry included personal data and the co-existence of associated or concomitant (AoC) diseases. Most of the sample’s patients felt to be a healthy person (86.8%). Mothers see their children as healthy and the auto rated criteria is significantly better than the adult celiac person (“t”= -6.024 (p = 0.000)). AoC diseases influenced negatively in the feeling of being healthy and strongly decreased the autorating. Longer time passed on treatment reflects an increase feeling of health and of the autorating. In people with AoC diseases and who feel sick, the increased time of treatment did not show significant differences. People with “gluten sensitivity” felt sicker and auto rated themselves with a lower number than celiacs. Many pediatric gastroenterologists notice that the newly agreed definition of celiac disease, referring it as “autoimmune, chronic, incurable, and multisystemic”, results in a very negative character of the condition which might compromise the future labour of this people as well as their admittance to different health insurance systems.