期刊文献+
共找到210,760篇文章
< 1 2 250 >
每页显示 20 50 100
NeTrainSim:a network-level simulator for modeling freight train longitudinal motion and energy consumption
1
作者 Ahmed S.Aredah Karim Fadhloun Hesham A.Rakha 《Railway Engineering Science》 EI 2024年第4期480-498,共19页
Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by ... Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption. 展开更多
关键词 Ne train Sim Network train simulation train longitudinal motion Energy consumption Carbon footprint
下载PDF
Attack-Resilient Distributed Cooperative Control of Virtually Coupled High-Speed Trains via Topology Reconfiguration
2
作者 Shunyuan Xiao Xiaohua Ge Qing Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1066-1068,共3页
Dear Editor,This letter addresses the resilient distributed cooperative control problem of a virtually coupled train convoy under stochastic disturbances and cyber attacks.The main purpose is to achieve distributed co... Dear Editor,This letter addresses the resilient distributed cooperative control problem of a virtually coupled train convoy under stochastic disturbances and cyber attacks.The main purpose is to achieve distributed coordination of virtually coupled high-speed trains with the prescribed inter-train distance and same cruise velocity. 展开更多
关键词 PRESCRIBED Speed trains
下载PDF
Aerodynamic Analysis and Optimization of Pantograph Streamline Fairing for High-Speed Trains
3
作者 Xiang Kan Yan Li +1 位作者 Tian Li Jiye Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1075-1091,共17页
A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effect... A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effectively reduce the resistance,in this study,different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed.In particular,this is accomplished through numerical simulations based on the k-ωShear Stress Transport(SST)two-equation turbulence model.The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph,thereby reducing its aerodynamic resistance.However,it also induces interferences in the flow field around the train,leading to variations in the aerodynamic resistance and lift of train components.It is shown that a maximum reduction of 56.52%in pantograph aerodynamic resistance and a peak decrease of 3.38%in total train aerodynamic resistance can be achieved. 展开更多
关键词 PANTOGRAPH FAIRING train aerodynamic numerical simulation
下载PDF
Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds
4
作者 Zun-Di Huang Zhen-Bin Zhou +2 位作者 Ning Chang Zheng-Wei Chen Su-Mei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期975-996,共22页
The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(ID... The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(IDDES)method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds.The effects of marshaling lengths(varying from 3-car to 8-car groups)on the train’s aerodynamic performance,surface pressure,and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes(N-S)equations.The results showed that the marshaling lengths had minimal influence on the aerodynamic performance of the head and middle cars.Conversely,the marshaling lengths are negatively correlated with the time-average side force coefficient(CS)and time-average lift force coefficient(Cl)of the tail car.Compared to the tail car of the 3-car groups,the CS and Cl fell by 27.77%and 18.29%,respectively,for the tail car of the 8-car groups.It is essential to pay more attention to the operational safety of the head car,as it exhibits the highest time average CS.Additionally,the mean pressure difference between the two sides of the tail car body increased with the marshaling lengths,and the side force direction on the tail car was opposite to that of the head and middle cars.Furthermore,the turbulent kinetic energy of the wake structure on the windward side quickly decreased as marshaling lengths increased. 展开更多
关键词 High-speed maglev train marshaling lengths crosswinds aerodynamic features
下载PDF
Integration of bio-inspired limb-like structure damping into motor suspension of high-speed trains to enhance bogie hunting stability
5
作者 Heng Zhang Liang Ling +1 位作者 Sebastian Stichel Wanming Zhai 《Railway Engineering Science》 EI 2024年第3期324-343,共20页
Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ... Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated. 展开更多
关键词 High-speed train Hunting stability Bio-inspired limb-like structure Motor suspension Nonlinear damping
下载PDF
Running safety assessment method of trains under seismic conditions based on the derailment risk domain
6
作者 Zhihui Zhu Gaoyang Zhou +2 位作者 Weiqi Zheng Wei Gong Yongjiu Tang 《Railway Engineering Science》 EI 2024年第4期499-517,共19页
The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjud... The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk. 展开更多
关键词 Earthquake High-speed train Running safety Wheel–rail contact Derailment risk domain
下载PDF
Robust Parameter Identification Method of Adhesion Model for Heavy Haul Trains
7
作者 Shuai Qian Lingshuang Kong Jing He 《Journal of Transportation Technologies》 2024年第1期53-63,共11页
A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy... A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy-duty trains. Firstly, a Kiencke stick-creep identification model was constructed, and the parameter identification task was transformed into a quadratic programming problem. Secondly, an iterative algorithm was constructed to solve the problem, into which a time-varying forgetting factor was added to track the change of the rail environment, and to solve the uncertainty problem of the wheel-rail environment. The Granger causality test was adopted to detect the interference, and then the weights of the current data were redistributed to solve the problem of noise interference in parameter identification. Finally, simulations were carried out and the results showed that the proposed method could track the change of the track environment in time, reduce the noise interference in the identification process, and effectively identify the adhesion performance parameters. 展开更多
关键词 Heavy-Duty train Kiencke Model Quadratic Programming Time-Varying Forgetting Factor Granger Causality Test
下载PDF
Measured dynamic load distribution within the in situ axlebox bearing of high-speed trains under polygonal wheel–rail excitation
8
作者 Yu Hou Xi Wang +4 位作者 Jiaqi Wei Menghua Zhao Wei Zhao Huailong Shi Chengyu Sha 《Railway Engineering Science》 EI 2024年第4期444-460,共17页
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen... The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input. 展开更多
关键词 High-speed train Axlebox bearing Dynamic load distribution In situ measurement Polygonal wheel–rail excitation
下载PDF
Flow and sound fields of scaled high-speed trains with different coach numbers running in long tunnel
9
作者 Qiliang Li Yuqing Sun +1 位作者 Menghan Ouyang Zhigang Yang 《Railway Engineering Science》 EI 2024年第3期401-420,共20页
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer... Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number. 展开更多
关键词 Flow and sound fields Scaled high-speed trains Different coach numbers Long tunnel Proper orthogonal decomposition
下载PDF
Theory and practice for assessing structural integrity and dynamical integrity of high-speed trains
10
作者 Weihua Zhang Yuanchen Zeng +1 位作者 Dongli Song Zhiwei Wang 《Railway Sciences》 2024年第2期113-127,共15页
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass... Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains. 展开更多
关键词 Structural integrity Dynamical integrity Vehicle system dynamics High-speed trains BOGIE Integrity assessment FATIGUE
下载PDF
Disturbance rejection tube model predictive levitation control of maglev trains
11
作者 Yirui Han Xiuming Yao Yu Yang 《High-Speed Railway》 2024年第1期57-63,共7页
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa... Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy. 展开更多
关键词 Maglev trains Levitation system Constrained control Disturbance observer Model predictive control
下载PDF
Multibody System Dynamics Analysis for Valve Trains 被引量:3
12
作者 覃文洁 左正兴 《Journal of Beijing Institute of Technology》 EI CAS 2000年第4期375-379,共5页
The theory of multibody system dynamics is used to simulate valve trains' kinematics and dynamics characteristics, and the methods of establishing and analyzing the multibody system dynamics model for valve trains... The theory of multibody system dynamics is used to simulate valve trains' kinematics and dynamics characteristics, and the methods of establishing and analyzing the multibody system dynamics model for valve trains are discussed. Since most of the flexible bodies of a valve train are slender parts, the finite segment method is used to build their models. Other parts such as cams, valve heads etc., are built as rigid bodies. After applying the constraints, forces and motions, the establishing of the whole system is accomplished, and the Lagrange's multiplier method can be used to obtain its dynamics constitutive equations. As an example, a valve trains multibody system model of 4100QB engine made by the Yunnan Internal Combustion Engine Limited Liability Company is established, and the analysis results obtained show that its working performance is generally good except that the air pass ability and the lubrication effect of the cam and the tappet have to be improved. 展开更多
关键词 valve train multibody system DYNAMICS
下载PDF
Typical Explosive Trains Analyzing and Computer Simulating
13
作者 杜志明 王诚 张建光 《Journal of Beijing Institute of Technology》 EI CAS 2001年第1期69-74,共6页
Through system analysis of typical explosive trains in various fuses, physical and correspondent mathematical models of typical explosive trains are established, based on mass conservation, momentum conservation, ener... Through system analysis of typical explosive trains in various fuses, physical and correspondent mathematical models of typical explosive trains are established, based on mass conservation, momentum conservation, energy conservation and so on. MAZE and DYNA2D program is used to dispose these models and results of the simulating of elements of explosive trains in a typical fuse are obtained. It is helpful for designing fuses. 展开更多
关键词 FUSE explosive trains model COMPUTER SIMULATION
下载PDF
Effect of RANS Turbulence Model on Aerodynamic Behavior of Trains in Crosswind 被引量:22
14
作者 Tian Li Deng Qin Jiye Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第5期145-156,共12页
The numerical simulation based on Reynolds time-averaged equation is one of the approved methods to evaluate the aerodynamic performance of trains in crosswind.However,there are several turbulence models,trains may pr... The numerical simulation based on Reynolds time-averaged equation is one of the approved methods to evaluate the aerodynamic performance of trains in crosswind.However,there are several turbulence models,trains may present different aerodynamic performances in crosswind using different turbulence models.In order to select the most suitable turbulence model,the inter-city express 2(ICE2)model is chosen as a research object,6 different turbulence models are used to simulate the flow characteristics,surface pressure and aerodynamic forces of the train in crosswind,respectively.6 turbulence models are the standard k-ε,Renormalization Group(RNG)k-ε,Realizable k-ε,Shear Stress Transport(SST)k-ω,standard k-ωand Spalart-Allmaras(SPA),respectively.The numerical results and the wind tunnel experimental data are compared.The results show that the most accurate model for predicting the surface pressure of the train is SST k-ω,followed by Realizable k-ε.Compared with the experimental result,the error of the side force coefficient obtained by SST k-ωand Realizable k-εturbulence model is less than 1%.The most accurate prediction for the lift force coefficient is achieved by SST k-ω,followed by RNG k-ε.By comparing 6 different turbulence models,the SST k-ωmodel is most suitable for the numerical simulation of the aerodynamic behavior of trains in crosswind. 展开更多
关键词 TURBULENCE model CROSSWIND High SPEED train Numerical simulation Aerodynamic
下载PDF
Development of a simulation model for dynamic derailment analysis of high-speed trains 被引量:8
15
作者 Liang Ling Xin-Biao Xiao Xue-Song Jin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期860-875,共16页
The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the dera... The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the derailment.The root causes of the dynamic derailment of highspeed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments.Numerical simulation using an advanced train–track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains.This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis.The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections.The ballast track model consists of rails,fastenings,sleepers,ballasts,and roadbed,which are modeled by Euler beams,nonlinear spring-damper elements,equivalent ballast bodies,and continuous viscoelastic elements,in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams.The commonly used derailment safety assessment criteria around the world are embedded in the simulation model.The train–track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track,in which the derailmentmechanism and train running posture during the dynamic derailment process were analyzed in detail.The effects of train and track modelling on dynamic derailment analysis were also discussed.The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis.The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations. 展开更多
关键词 High-speed railway High-speed train DERAILMENT train–track dynamics Track buckling Numerical simulation
下载PDF
Numerical study on wake characteristics of high-speed trains 被引量:20
16
作者 Shuan-Bao Yao Zhen-Xu Sun +2 位作者 Di-Long Guo Da-Wei Chen Guo-Wei Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第6期811-822,共12页
Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, t... Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of un- steady Reynold-averaged Navier-Stokes (URANS) and de- tached eddy simulation (DES) are utilized, respectively. Re- suits reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system. 展开更多
关键词 Wake flow structures URANS DES High speed trains
下载PDF
Theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains 被引量:15
17
作者 Ning Zhu Shou-Guang Sun +1 位作者 Qiang Li Hua Zou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期901-909,共9页
One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions.This study conducts theoretical research and experimental validation of quasi-sta... One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions.This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains.The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames.Moreover,a force-measuring frame is designed and manufactured based on the quasi-static load series.The load decoupling model of the quasi-static load series is then established via calibration tests.Quasi-static load–time histories,together with online tests and decoupling analysis,are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line.The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm.The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames. 展开更多
关键词 Load spectra QUASI-STATIC Bogie frame CALIBRATION High-speed train
下载PDF
An improved algorithm for fluid-structure interaction of high-speed trains under crosswind 被引量:31
18
作者 Tian LI Jiye ZHANG Weihua ZHANG 《Journal of Modern Transportation》 2011年第2期75-81,共7页
Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication ... Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication between fluid solver and structure solver is avoided by inserting the program of train-track coupling dynamics into fluid dynamics program, and the relaxation factor concerning the load boundary of the fluid-structure interface is introduced to improve the fluctuation and convergence of aerodynamic forces. With this method, the fluid-structure dynamics of a highspeed train are simulated under the condition that the velocity of crosswind is 13.8 m/s and the train speed is 350 km/h. When the relaxation factor equals 0.5, the fluctuation of aerodynamic forces is lower and its convergence is faster than in other cases. The side force and lateral displacement of the head train are compared between off-line simulation and co-simulation. Simulation results show that the fluid-structure interaction has a significant influence on the aerodynam- ics and attitude of the head train under crosswind conditions. In addition, the security indexes of the head train worsen after the fluid-structure interaction calculation. Therefore, the fluid-structure interaction calculation is necessary for high-speed trains. 展开更多
关键词 high-speed train fluid-structure interaction CROSSWIND AERODYNAMICS relaxation factor
下载PDF
Study on the operational safety of high-speed trains exposed to stochastic winds 被引量:11
19
作者 Meng-Ge Yu Ji-Ye Zhang +1 位作者 Ke-Yue Zhang Wei-Hua Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期351-360,共10页
The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line betwe... The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line between safety state and failure state of high-speed trains, which can not evaluate the risk of derailment of high-speed trains when ex- posed to natural winds. In the present paper, a more realistic approach taking into account the stochastic characteristics of natural winds is proposed, which can give a reasonable and effective assessment of the operational safety of high-speed trains under stochastic winds. In this approach, the longitudi- nal and lateral components of stochastic winds are simulated based on the Cooper theory and harmonic superposition. An algorithm is set up for calculating the unsteady aerody- namic forces (moments) of the high-speed trains exposed to stochastic winds. A multi-body dynamic model of the rail vehicle is established to compute the vehicle system dynamic response subjected to the unsteady aerodynamic forces (mo- ments) input. Then the statistical method is used to get the mean characteristic wind curve (MCWC) and spread range of the high-speed trains exposed to stochastic winds. It is found that the CWC provided by the previous analyticalmethod produces over-conservative limits. The methodol- ogy proposed in the present paper can provide more signif- icant reference for the safety operation of high-speed trains exposed to stochastic winds. 展开更多
关键词 High-speed trains Stochastic winds Unsteadyaerodynamic forces Mean characteristic wind curve
下载PDF
Analysis of ground vibrations due to underground trains by 2.5D finite/infinite element approach 被引量:18
20
作者 Hsiao-Hui Hung Y. B. Yang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期327-335,共9页
The 2.5D finite/infinite element approach is adopted to study wave propagation problems caused by underground moving trains. The irregularities of the near field, including the tunnel structure and parts of the soil, ... The 2.5D finite/infinite element approach is adopted to study wave propagation problems caused by underground moving trains. The irregularities of the near field, including the tunnel structure and parts of the soil, are modeled by the finite elements, and the wave propagation properties of the far field extending to infinity are modeled by the infinite elements. One particular feature of the 2.5D approach is that it enables the computation of the three-dimensional response of the half-space, taking into account the load-moving effect, using only a two-dimensional profile. Although the 2.5D finite/infinite element approach shows a great advantage in studying the wave propagation caused by moving trains, attention should be given to the calculation aspects, such as the rules for mesh establishment, in order to avoid producing inaccurate or erroneous results. In this paper, some essential points for consideration in analysis are highlighted, along with techniques to enhance the speed of the calculations. All these observations should prove useful in making the 2.5D finite/infinite element approach an effective one. 展开更多
关键词 ground vibrations 2.5D finite/infinite element underground train wave number wave propagation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部