Purpose–To facilitate technical managers and field workers to master and understand the provisions of Technical Management Regulations for Railway more accurately,so as to better serve the comprehensive revision of t...Purpose–To facilitate technical managers and field workers to master and understand the provisions of Technical Management Regulations for Railway more accurately,so as to better serve the comprehensive revision of the Regulations,this paper carries out the research on the traceability and evolution of the provisions of the Regulations.Design/methodology/approach–This paper studies and analyzes the evolution of the 11th edition of the Regulations by analyzing the relevance of clauses and summarizes the historical background of the development of calendar editions of the Regulations.The basic research on the traceability and evolution of the Regulations is carried out from four aspects:the continuity of the development of the Regulations,the authority of contents,the relevance of clauses and the richness of historical materials.Findings–From the first edition of the Regulations issued by the former Ministry of Railways in 1950 to the 11th edition,there have been ten comprehensive revisions.There is a strong correlation and continuity between the calendar editions of the Regulations in terms of chapter structure and clauses.Studying the context of the terms of the Regulations is an important way to understand and master the current clauses of the Regulations.Originality/value–Through the research on the traceability and evolution of the clauses of the Regulations,one is to explore the context of the development of railway technical equipment in China,the other is to clarify the historical background when the provisions were formulated and the third is to trace the development and evolution of the provisions.The revision of the Regulations is based on an accurate grasp of the context of the provisions,which can effectively judge the possible security risks caused by the revision of the provisions and avoid the possible risks in field implementation from the source.展开更多
Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relati...Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.展开更多
In this paper,the geographic name in Southwest China is regarded as a symbolic representation of human beings,and the dynamic social and historical process behind the place names is restored from the perspective of th...In this paper,the geographic name in Southwest China is regarded as a symbolic representation of human beings,and the dynamic social and historical process behind the place names is restored from the perspective of the symbolic anthropology.There are three paths in the construction and evolution of geographic names in Southwest China—Ethnic information,sacred systems,and local representation,which have been rewritten,masked,and reconstructed over the years.As a result,the system of geographical names is gradually formed and integrated into local memory through space building,culture filling,and so on,affecting and influencing local group identity and cognitive concept.展开更多
A new approach for studying the time-evolution law of a chaotic light field in a damping-gaining coexisting process is presented. The new differential equation for determining the parameter of the density operator p(...A new approach for studying the time-evolution law of a chaotic light field in a damping-gaining coexisting process is presented. The new differential equation for determining the parameter of the density operator p(t) is derived and the solution of f for the damping and gaining processes are studied separately. Our approach is direct and the result is concise since it is not necessary for us to know the Kraus operators in advance.展开更多
A long-term goal of theoretical physics is to develop a single simple theory or model that would unify the four known fundamental forces (or interactions) and give explanations for the origin and the evolution of the ...A long-term goal of theoretical physics is to develop a single simple theory or model that would unify the four known fundamental forces (or interactions) and give explanations for the origin and the evolution of the Universe. Here a “spiral wave law” has been proposed based on the previous studies that a consistent universe field presents various forms of spiral (helical) wave motions at the speed of light (c), and therefore, a mathematical equation for the relationship between the radius of a spiral wave motion (r) and its wave length (λ) is derived including a simplified formula ( or ), which could provide a novel explanation for the origin and the evolution of the Universe, and the space-time relationships. This model may give a new way for the unification of four fundamental forces and determine the moving properties of galaxies and basic particles, and the propagation characteristics of electromagnetic waves at the large or small scale.展开更多
The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectros...The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectroscopy,and photoluminescence(PL)tests.The experimental results indicate that temperatures higher than 750℃effectively increase the crystallization rate and surface smoothness of the Si buffer layer,and temperatures higher than 600℃significantly enhance the migration ability of Ge atoms,thus increasing the probability of Ge atoms meeting and nucleating to form QDs on Si buffer layer,but an excessively high temperature will cause the QDs to undergo an Ostwald ripening process and thus develop into super large islands.In addition,some PL peaks were observed in samples containing small-sized,high-density Ge QDs,the photoelectric properties reflected by these peaks were in good agreement with the corresponding structural characteristics of the grown QDs.Our results demonstrate the viability of preparing high-quality QDs by magnetron sputtering at high deposition rate,and the temperature effect is expected to work in conjunction with other controllable factors to further regulate QD growth,which paves an effective way for the industrial production of QDs that can be used in future devices.展开更多
Irrigation was developed in ancient China.The management of water resources has existed since ancient times when the embryonic form of water right system was established.From perspectives of environmental law,the wate...Irrigation was developed in ancient China.The management of water resources has existed since ancient times when the embryonic form of water right system was established.From perspectives of environmental law,the water rights system in ancient China,especially the water rights system after Ming Dynasty,gave no explicit concept to water rights,but the participatory management of water users was included in implementation.Such management had the same connotation with the modern concept of water rights and thereby it has an instructional significance to perfect the water rights system of in modern China.展开更多
Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining peri...Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.展开更多
In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the co...In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.展开更多
Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore t...Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore the generating mechanism and evolution law of volume alternate cavitation(VAC).In the VAC,liquid water is placed in an airtight container with a variable volume.As the volume alternately changes,the liquid water inside the container continues to cavitate.Then,the mixture turbulence model and in-cylinder dynamic grid model are adopted to conduct computational fluid dynamics simulation of volume alternate cavitation.In the simulation,the cloud images at seven heights on the central axis are monitored,and the phenomenon and mechanism of height and eccentricity are analyzed in detail.By employing the cavitation flow visualization method,the generating mechanism and evolution law of cavitation are revealed.The synergistic effects of experiments and high-speed camera capturing confirm the correctness of the simulation results.In the experiment,the volume change stroke of the airtight container is set to 20 mm,the volume change frequency is 18 Hz,and the shooting frequency of the high-speed camera is set to 10000 FPS.The experimental results indicate that the position of the cavitation phenomenon has a reasonable law during the whole evolution cycle of the cavitation cloud.Also,the volume alternation cycle corresponds to the generation,development,and collapse stages of cavitation bubbles.展开更多
Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution l...Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.展开更多
As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrate...As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrated services information (NISI) in a global navigation satellite system (GNSS) with inter-satellite links (ISLs) is studied by taking the real situation of inter-satellite communication links into account. An on-demand computing and buffering centralized route strategy is proposed based on dynamic grouping and the topology evolution law of the GNSS network within which the satellite nodes are operated in the manner of dynamic grouping. Dynamic grouping is based on satellites spatial relationships and the group role of the satellite node changes by turns due to its spatial relationships. The route strategy provides significant advantages of high efficiency, low complexity, and flexi- ble configuration, by which the established GNSS can possess the features and capabilities of feasible deployment, efficient transmission, convenient management, structural invulnerability and flexible expansion.展开更多
A new algorithm for symbolic computation of polynomial-type conserved densities for nonlinear evolution systems is presented. The algorithm is implemented in Maple. The improved algorithm is more efficient not only in...A new algorithm for symbolic computation of polynomial-type conserved densities for nonlinear evolution systems is presented. The algorithm is implemented in Maple. The improved algorithm is more efficient not only in removing the redundant terms of the genera/form of the conserved densities but also in solving the conserved densities with the associated flux synchronously without using Euler operator. Furthermore, the program conslaw.mpl can be used to determine the preferences for a given parameterized nonlinear evolution systems. The code is tested on several well-known nonlinear evolution equations from the soliton theory.展开更多
The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground ...The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground pressure and strata control,this research proposed a new solution to mining stress problems by establishing adual-load-zone stratum structural model.Elastic foundation beam theory was used tosolve the stress of overlying strata of the dual-load-zones with superposition method,which revised the traditional calculation method of mining stress.The abnormal increaseof lead abutment pressure in the mining area was explained effectively,through which theevolution law of mining stress in the case of hard rock was obtained.The results indicatethat mining stress experiences a drastic change within the range of 50 m ahead of the coalwall due to the collapse of main roof;under the influence of main key stratum andinferior key strata,the influence range of lead abutment pressure is extended up toapproximately 120 m in the working face;this remarkable increase can be attributed tothe excessive length of sagging zone.Results from both the dual-load-zone modelexperiment and field measurement demonstrate high consistency.The model can predictthe influence range of abutment pressure effectively and thus guide the safety productionof mining.展开更多
For improving global stability of mining environment reconstructing structure,the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element an...For improving global stability of mining environment reconstructing structure,the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element analysis code.Three kinds of filling schemes were designed and calculated,in which the filling heights were 2,4,and 7 m,separately.The results show that there are some rules in the stress field with the increase of the filling height as follows:(1) the maximum value of tension stress of the roof decreases gradually,and stress conditions are improved gradually;(2) the tension stress status in the vertical pillar is transformed into the compressive stress status,and the carrying capacity is improved gradually;however,when the filling height is beyond 2.8 m,the carrying capacity of the vertical pillar grows very slowly,so,there is little significance to continue to fill the low-grade backfill;(3) the bottom pillar suffers the squeezing action from the vertical pillars at first and then the gravity action of the low-grade backfill,and the maximum value of tension stress of the bottom pillar firstly increases and then decreases.Considering the economic factor,security and other factors,the low-grade backfill has the most reasonable height(2.8 m) in the scope of all filling height.展开更多
In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamicall...In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.展开更多
This short digest is devoted to the mechanism of ring formation during the origination and evolution of planetary and satellite systems in the Universe. The appearance of these structures can be traced back to the phe...This short digest is devoted to the mechanism of ring formation during the origination and evolution of planetary and satellite systems in the Universe. The appearance of these structures can be traced back to the phenomenon of spatially periodic condensation which can be observed on the Earth. The author actually posited the existence of exoplanetary systems and the cosmic scale of this phenomenon. It was accurately predicted that Uranus, Neptune and other heavenly bodies have rings. The suggested general mechanism rationalized the Titius-Bode law which, while not being a precise law, often accurately describes the tendency towards varying distances between planets (and their moons) and central bodies. The possibility of this law manifestation in exoplanetary systems had been predicted by the author long before their discovery. Many exoplanetary systems have been discovered by now and there is some evidence corroborating the mechanism of spatially periodic condensation involved in the formation of ring-like structures in these systems. The author’s hypothesis is now becoming a theory or a fact. It appears that we are now witnessing the dawn of a new extensive cosmology, taking into account general physicochemical mechanisms of space object formation.展开更多
We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,...We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,which shows that even though the two channels are independent of each other,since the two modes of the initial state are entangled with each other,the final state remains entangled.Nevertheless,although the squeezing(entanglement)between the two modes is weakened after the diffusion,it is not completely removed.We also highlight the law of photon number evolution.In the calculation process used in this paper,we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.展开更多
In order to study evolution laws of tensile fractures in a coal mining area, based on the classification of the fractures formed by mining, a physical simulation test was carried out to simulate the dynamic evolut...In order to study evolution laws of tensile fractures in a coal mining area, based on the classification of the fractures formed by mining, a physical simulation test was carried out to simulate the dynamic evolution process of tensile fractures in coal mining areas. The results showed that after the coal in the mining area was mined, the mining area underwent obvious movement and deformation and forms tensile fractures. As the min-ing working face was advanced, the tensile fractures underwent the dynamic process of generation, development and closure. The changing curves of density of tensile fractures with the increase of mining length of the working face liked a ladder (it increased slowly and then rapidly) and then had two peaks (the second peak was higher than the first peak).展开更多
The development of third party liability system of Internet Service Provider in China has experienced three periods: the starting period,the transitional period and the forming period. As the law formulated in the for...The development of third party liability system of Internet Service Provider in China has experienced three periods: the starting period,the transitional period and the forming period. As the law formulated in the forming period,Tort Law of the PRC has higher legal rank and wider regulation scope than former laws in this field. It balances public and private interests. It establishes unified regulations about third party liability of ISP in the field of basic law related to civil affairs. In application of Article 36 of Tort Law,it should be noticed that this article is liability component,and it defines only one form of infringement liability-contributory infringement. No classification of ISP is presented in this article.展开更多
基金funded by Revision and Key Technical Research on Railway Technical Management Regulation(P2023B001).
文摘Purpose–To facilitate technical managers and field workers to master and understand the provisions of Technical Management Regulations for Railway more accurately,so as to better serve the comprehensive revision of the Regulations,this paper carries out the research on the traceability and evolution of the provisions of the Regulations.Design/methodology/approach–This paper studies and analyzes the evolution of the 11th edition of the Regulations by analyzing the relevance of clauses and summarizes the historical background of the development of calendar editions of the Regulations.The basic research on the traceability and evolution of the Regulations is carried out from four aspects:the continuity of the development of the Regulations,the authority of contents,the relevance of clauses and the richness of historical materials.Findings–From the first edition of the Regulations issued by the former Ministry of Railways in 1950 to the 11th edition,there have been ten comprehensive revisions.There is a strong correlation and continuity between the calendar editions of the Regulations in terms of chapter structure and clauses.Studying the context of the terms of the Regulations is an important way to understand and master the current clauses of the Regulations.Originality/value–Through the research on the traceability and evolution of the clauses of the Regulations,one is to explore the context of the development of railway technical equipment in China,the other is to clarify the historical background when the provisions were formulated and the third is to trace the development and evolution of the provisions.The revision of the Regulations is based on an accurate grasp of the context of the provisions,which can effectively judge the possible security risks caused by the revision of the provisions and avoid the possible risks in field implementation from the source.
文摘Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.
文摘In this paper,the geographic name in Southwest China is regarded as a symbolic representation of human beings,and the dynamic social and historical process behind the place names is restored from the perspective of the symbolic anthropology.There are three paths in the construction and evolution of geographic names in Southwest China—Ethnic information,sacred systems,and local representation,which have been rewritten,masked,and reconstructed over the years.As a result,the system of geographical names is gradually formed and integrated into local memory through space building,culture filling,and so on,affecting and influencing local group identity and cognitive concept.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61141007,11047133,and 11175113)the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 2010GQS0080 and 2010GQW0027)+1 种基金the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ11339)the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University
文摘A new approach for studying the time-evolution law of a chaotic light field in a damping-gaining coexisting process is presented. The new differential equation for determining the parameter of the density operator p(t) is derived and the solution of f for the damping and gaining processes are studied separately. Our approach is direct and the result is concise since it is not necessary for us to know the Kraus operators in advance.
文摘A long-term goal of theoretical physics is to develop a single simple theory or model that would unify the four known fundamental forces (or interactions) and give explanations for the origin and the evolution of the Universe. Here a “spiral wave law” has been proposed based on the previous studies that a consistent universe field presents various forms of spiral (helical) wave motions at the speed of light (c), and therefore, a mathematical equation for the relationship between the radius of a spiral wave motion (r) and its wave length (λ) is derived including a simplified formula ( or ), which could provide a novel explanation for the origin and the evolution of the Universe, and the space-time relationships. This model may give a new way for the unification of four fundamental forces and determine the moving properties of galaxies and basic particles, and the propagation characteristics of electromagnetic waves at the large or small scale.
基金Founded by the National Key Research and Development Program(No.2021YFB3802400)the National Natural Science Foundation of China(No.52161037)the Basic Research Project of Yunnan Province(No.202001AU070112)。
文摘The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectroscopy,and photoluminescence(PL)tests.The experimental results indicate that temperatures higher than 750℃effectively increase the crystallization rate and surface smoothness of the Si buffer layer,and temperatures higher than 600℃significantly enhance the migration ability of Ge atoms,thus increasing the probability of Ge atoms meeting and nucleating to form QDs on Si buffer layer,but an excessively high temperature will cause the QDs to undergo an Ostwald ripening process and thus develop into super large islands.In addition,some PL peaks were observed in samples containing small-sized,high-density Ge QDs,the photoelectric properties reflected by these peaks were in good agreement with the corresponding structural characteristics of the grown QDs.Our results demonstrate the viability of preparing high-quality QDs by magnetron sputtering at high deposition rate,and the temperature effect is expected to work in conjunction with other controllable factors to further regulate QD growth,which paves an effective way for the industrial production of QDs that can be used in future devices.
文摘Irrigation was developed in ancient China.The management of water resources has existed since ancient times when the embryonic form of water right system was established.From perspectives of environmental law,the water rights system in ancient China,especially the water rights system after Ming Dynasty,gave no explicit concept to water rights,but the participatory management of water users was included in implementation.Such management had the same connotation with the modern concept of water rights and thereby it has an instructional significance to perfect the water rights system of in modern China.
文摘Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.
基金supported within the framework of the Basic Research Project of the Yunnan Province-Young Program(No.2019FD097)Agricultural Joint Special Project of the Yunnan Province-General Program(No.202101BD070001-118).
文摘In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.
基金Supported by National Nature Science Foundation of China(Grant No.51575245)Jiangsu Provincial Key research and development program(Grant No.BE2015134)Zhenjiang Municipal Key Research and Development Project(Grant No.KZ2020001).
文摘Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore the generating mechanism and evolution law of volume alternate cavitation(VAC).In the VAC,liquid water is placed in an airtight container with a variable volume.As the volume alternately changes,the liquid water inside the container continues to cavitate.Then,the mixture turbulence model and in-cylinder dynamic grid model are adopted to conduct computational fluid dynamics simulation of volume alternate cavitation.In the simulation,the cloud images at seven heights on the central axis are monitored,and the phenomenon and mechanism of height and eccentricity are analyzed in detail.By employing the cavitation flow visualization method,the generating mechanism and evolution law of cavitation are revealed.The synergistic effects of experiments and high-speed camera capturing confirm the correctness of the simulation results.In the experiment,the volume change stroke of the airtight container is set to 20 mm,the volume change frequency is 18 Hz,and the shooting frequency of the high-speed camera is set to 10000 FPS.The experimental results indicate that the position of the cavitation phenomenon has a reasonable law during the whole evolution cycle of the cavitation cloud.Also,the volume alternation cycle corresponds to the generation,development,and collapse stages of cavitation bubbles.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)the Fundamental Research Funds for the Central Universities of China(No.2012LWB42)
文摘Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.
文摘As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrated services information (NISI) in a global navigation satellite system (GNSS) with inter-satellite links (ISLs) is studied by taking the real situation of inter-satellite communication links into account. An on-demand computing and buffering centralized route strategy is proposed based on dynamic grouping and the topology evolution law of the GNSS network within which the satellite nodes are operated in the manner of dynamic grouping. Dynamic grouping is based on satellites spatial relationships and the group role of the satellite node changes by turns due to its spatial relationships. The route strategy provides significant advantages of high efficiency, low complexity, and flexi- ble configuration, by which the established GNSS can possess the features and capabilities of feasible deployment, efficient transmission, convenient management, structural invulnerability and flexible expansion.
文摘A new algorithm for symbolic computation of polynomial-type conserved densities for nonlinear evolution systems is presented. The algorithm is implemented in Maple. The improved algorithm is more efficient not only in removing the redundant terms of the genera/form of the conserved densities but also in solving the conserved densities with the associated flux synchronously without using Euler operator. Furthermore, the program conslaw.mpl can be used to determine the preferences for a given parameterized nonlinear evolution systems. The code is tested on several well-known nonlinear evolution equations from the soliton theory.
基金This research is supported by the National Natural Science Foundation of China(51874289)and the National Key Research and Development Program of China(2018YFC0604705)and the Fundamental Research Funds for the Central Universities 2018ZDPY05.There is no conflict of interest regarding the publication of this paper.
文摘The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground pressure and strata control,this research proposed a new solution to mining stress problems by establishing adual-load-zone stratum structural model.Elastic foundation beam theory was used tosolve the stress of overlying strata of the dual-load-zones with superposition method,which revised the traditional calculation method of mining stress.The abnormal increaseof lead abutment pressure in the mining area was explained effectively,through which theevolution law of mining stress in the case of hard rock was obtained.The results indicatethat mining stress experiences a drastic change within the range of 50 m ahead of the coalwall due to the collapse of main roof;under the influence of main key stratum andinferior key strata,the influence range of lead abutment pressure is extended up toapproximately 120 m in the working face;this remarkable increase can be attributed tothe excessive length of sagging zone.Results from both the dual-load-zone modelexperiment and field measurement demonstrate high consistency.The model can predictthe influence range of abutment pressure effectively and thus guide the safety productionof mining.
基金Project(200911MS01) supported by the Scientific Research Fund of Guangxi Provincial Education Department, China Project (XBZ100126) supported by the Scientific Research Foundation of Guangxi University, China Project(2009B005) supported by the Teaching Reform Foundation in the New Century Higher Education of Guangxi Province,China
文摘For improving global stability of mining environment reconstructing structure,the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element analysis code.Three kinds of filling schemes were designed and calculated,in which the filling heights were 2,4,and 7 m,separately.The results show that there are some rules in the stress field with the increase of the filling height as follows:(1) the maximum value of tension stress of the roof decreases gradually,and stress conditions are improved gradually;(2) the tension stress status in the vertical pillar is transformed into the compressive stress status,and the carrying capacity is improved gradually;however,when the filling height is beyond 2.8 m,the carrying capacity of the vertical pillar grows very slowly,so,there is little significance to continue to fill the low-grade backfill;(3) the bottom pillar suffers the squeezing action from the vertical pillars at first and then the gravity action of the low-grade backfill,and the maximum value of tension stress of the bottom pillar firstly increases and then decreases.Considering the economic factor,security and other factors,the low-grade backfill has the most reasonable height(2.8 m) in the scope of all filling height.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.51304154)the Natural Science Foundation Anhui Province(No.1408085MKL92)
文摘In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.
文摘This short digest is devoted to the mechanism of ring formation during the origination and evolution of planetary and satellite systems in the Universe. The appearance of these structures can be traced back to the phenomenon of spatially periodic condensation which can be observed on the Earth. The author actually posited the existence of exoplanetary systems and the cosmic scale of this phenomenon. It was accurately predicted that Uranus, Neptune and other heavenly bodies have rings. The suggested general mechanism rationalized the Titius-Bode law which, while not being a precise law, often accurately describes the tendency towards varying distances between planets (and their moons) and central bodies. The possibility of this law manifestation in exoplanetary systems had been predicted by the author long before their discovery. Many exoplanetary systems have been discovered by now and there is some evidence corroborating the mechanism of spatially periodic condensation involved in the formation of ring-like structures in these systems. The author’s hypothesis is now becoming a theory or a fact. It appears that we are now witnessing the dawn of a new extensive cosmology, taking into account general physicochemical mechanisms of space object formation.
基金supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents in College of Anhui Province,China(Grant No.gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2019A0688 and KJ2020A0638)。
文摘We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,which shows that even though the two channels are independent of each other,since the two modes of the initial state are entangled with each other,the final state remains entangled.Nevertheless,although the squeezing(entanglement)between the two modes is weakened after the diffusion,it is not completely removed.We also highlight the law of photon number evolution.In the calculation process used in this paper,we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.
文摘In order to study evolution laws of tensile fractures in a coal mining area, based on the classification of the fractures formed by mining, a physical simulation test was carried out to simulate the dynamic evolution process of tensile fractures in coal mining areas. The results showed that after the coal in the mining area was mined, the mining area underwent obvious movement and deformation and forms tensile fractures. As the min-ing working face was advanced, the tensile fractures underwent the dynamic process of generation, development and closure. The changing curves of density of tensile fractures with the increase of mining length of the working face liked a ladder (it increased slowly and then rapidly) and then had two peaks (the second peak was higher than the first peak).
基金“Research of State Intellectual Property Policy System for Promoting the Construction of IndependentInnovation Capability”( 12&ZD073)-Major project of National Social Science Fund Program
文摘The development of third party liability system of Internet Service Provider in China has experienced three periods: the starting period,the transitional period and the forming period. As the law formulated in the forming period,Tort Law of the PRC has higher legal rank and wider regulation scope than former laws in this field. It balances public and private interests. It establishes unified regulations about third party liability of ISP in the field of basic law related to civil affairs. In application of Article 36 of Tort Law,it should be noticed that this article is liability component,and it defines only one form of infringement liability-contributory infringement. No classification of ISP is presented in this article.