Based on a large amount of field investigation and observations, the paper analyzes and summarizes the mining depths and depth distribution of coal mines in China, discusses the characteristics of undrground pressure ...Based on a large amount of field investigation and observations, the paper analyzes and summarizes the mining depths and depth distribution of coal mines in China, discusses the characteristics of undrground pressure appearance in the entries of deep mining, points out some characteristics of surtounding rocks when rHo> =0.5, such as obvious rheologital deformation,and puts forward the main principles of supporting the entries in deep mining展开更多
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi...The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.展开更多
The multiphase reaction process of pressure leaching is mainly carried out in the liquid phase. Therefore, gas holdup is essential for the gas–liquid–solid phase reaction and the extraction rate of valuable metals. ...The multiphase reaction process of pressure leaching is mainly carried out in the liquid phase. Therefore, gas holdup is essential for the gas–liquid–solid phase reaction and the extraction rate of valuable metals. In this paper, a transparent quartz autoclave, a six blades disc turbine-type agitator, and a high-speed camera were used to investigate the gas holdup of the pressure leaching process. Furthermore, experiments determining the effects of agitation rate, temperature, and oxygen partial pressure on gas holdup were carried out. The results showed that when the agitation rate increased from 350 to 600 r/min, the gas holdup increased from 0.10% to 0.64%. When the temperature increased from 363 to 423 K, the gas holdup increased from 0.14% to 0.20%. When the oxygen partial pressure increased from 0.1 to 0.8 MPa, the gas holdup increased from 0.13% to 0.19%. A similar criteria relationship was established by Homogeneous Principle and Buckingham's theorem. Comprehensively, empirical equation of gas holdup was deduced on the basis of experimental data and the similarity theory, where the criterion equation was determined as ε=4.54×10^(-11)n^(3.65)T^(2.08)P_g^(0.18). It can be seen from the formula that agitation rate made the most important impact on gas holdup in the pressure leaching process using the mixed-flow agitator.展开更多
Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir.In this study,dedicated experiments and theoretical arguments based on the visualization of porous media are used t...Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir.In this study,dedicated experiments and theoretical arguments based on the visualization of porous media are used to assess the effects of the fracture angle,spacing,and relevant elastic parameters on the principal value of the permeability tensor.The fracture apertures at different angles show different change rates,which influence the relative permeability for different sets of fractures.Furthermore,under the same pressure condition,the fractures with different angles show different degrees of deformation so that the principal value direction of permeability rotates.This phenomenon leads to a variation in the water seepage direction in typical water-injection applications,thereby hindering the expected exploitation effect of the original well network.Overall,the research findings in this paper can be used as guidance to improve the effectiveness of water injection exploitation in the oil field industry.展开更多
Vascular diseases such as aneurysm,hemadostenosis,aortic dissection are the primary causes of people’s death around world.As a result,it is significant to improve our knowledge about them,which can help to treat the ...Vascular diseases such as aneurysm,hemadostenosis,aortic dissection are the primary causes of people’s death around world.As a result,it is significant to improve our knowledge about them,which can help to treat the disease.Measuring the hemodynamic factor like the blood pressure,the wall shear stress(WSS)and the oscillatory shear index(OSI)is,however,still beyond the capabilities of in-vivo measurement techniques.So the use of mathematical models and numerical simulations for the studies of the blood flow in arteries and,in general,of the cardiovascular system,both in physiological and pathological conditions,has received an increasing attention in the biomedical community during the last two decades.Indeed,such studies aims at enhancing the current knowledge of the physiology of the cardiovascular system,as well as providing reliable tools for the medical doctors to predict the natural course of pathologies and,possibly,the occurrence of cardiovascular accidents.The computational vascular fluid-structure interaction(FSI)methodology is a numerical simulation method which is used to explain the hemodynamic factors.The WSS on the luminal wall and the mechanical stress in the vascular wall are directly related to the location of the lesion,and the blood flow strongly interacts with the vascular wall motion.The arterial wall continually adapts to the charge of its mechanical environment(due to,for example,growth,atrophy,remodelling,repair,ageing,and disease)and consequently undergoes several irreversible processes.Primary acute mechanisms of vascularFSI numerical simulation seem to be associated with(1)the arterial histology and the patient-specific complex geometry,(2)the typical mechanical properties of the layer,(3)properties of the blood is assumed as Newtonian fluid or non-Newtonian fluid based on the scale ofthe diameter of a vessel,(4)residual stress in the zero-pressure configuration.The arterial system naturally function under permanent physiological loading conditions.Fung defined the residual stress and measured the opening angle which varies greatly along the aortic tree.Consequently,most of these systems never experience a stress-free state in their’service life’,so a stress and strain fields are present in any in vivo obtained patientspecific cardiovascular geometry.The residual stress always be ignored in FSI simulation or be assumed to equal zero,and the vivo patient-specific artery geometry is assumed as zero-pressure configuration.To define the in vivo stress state of artery,an inverse problem needs to be solved:the undeformed shape of a body or its stress state in its deformed state needs to be determined given the deformed configuration and the loads causing this deformation.The modular inverse elastostatics method is used to resolve the pressure-induced stress state for in vivo imaging based on cardiovascular modeling proposed by Peirlinck.Here,we build a living vessel FSI model based on 4 key factors.In order to get the universal simulation results,we focus on idealized geometries of the vessel that represent healthy(physiological)conditions of the cerebral vasculature.Blood can be assumed as the Newtonian fluid at this scale.The anisotropic hyperelastic constitutive law(Gasser-Holzapfel-Ogden)is used in zero-pressure configuration.Afterwards,we propose the material parameters for the different constitutive models and the computational configurations.We demonstrate the importance of introducing the residual stress into vascular blood flow modeling by performing a comparing zero-pressure configuration and no-resistance configuration.We get the conclusion that the zero-pressure status model has smaller displacement and larger stress distribution compared with no-resistance stress model.Hence,the methodology presented here will be particularly useful to study the mechanobiological processes in the healthy and diseased vascular wall.展开更多
The propagation of shock wave pressure in the tunnel is greatly affected by the tunnel structure,shape,material and other factors,and there are great differences in the propagation law of shock wave pressure in differ...The propagation of shock wave pressure in the tunnel is greatly affected by the tunnel structure,shape,material and other factors,and there are great differences in the propagation law of shock wave pressure in different kinds of tunnels.In order to study the propagation law of shock wave pressure in tunnels with different materials,taking the long straight tunnel with the square section as an example,the AUTODYN software is used to simulate the explosion of TNT in the concrete,steel and granite tunnel,and study on the variation law of shock wave pressure in tunnels with different materials.By using dimensional analysis and combined with the results of numerical simulation,a mathematical model of the propagation law of shock wave pressure in the tunnel is established,and the effectiveness of the mathematical model is verified by making the explosion test of the warhead in the reinforce concrete tunnel.The results show that the same mass of TNT explodes in the tunnel with different materials,and the shock wave overpressure peak at the same measuring point is approximate in the near field.However,there is a significant difference in the middle-far fields from the explosion center,the shock wave overpressure peak in the steel tunnel is 20.76%and 34.82%higher than that of the concrete and the granite tunnel respectively,and the shock wave overpressure peak in the concrete tunnel is 24.91%higher than that in the granite tunnel.Through the experimental verification,getting the result that the maximum relative deviation between the measured value and the calculated value of the shock wave overpressure peak is 11.85%.Therefore,it is proved that the mathematical model can be used to predict the shock wave overpressure peak in the tunnel with different materials,and it can provide some reference for the power evaluation of warhead explosion in the tunnel.展开更多
There are great differences in the distribution characteristics of shock waves produced by ammunition explosions at different altitudes.At present,there are many studies on plain explosion shock waves,but there are fe...There are great differences in the distribution characteristics of shock waves produced by ammunition explosions at different altitudes.At present,there are many studies on plain explosion shock waves,but there are few studies on the distribution characteristics of plateau explosion shock waves,and there is still a lack of complete analysis and evaluation methods.This paper compares and analyzes shock wave overpressure data at different altitudes,obtains the attenuation effect of different altitudes on the shock wave propagation process and proposes a calculation formula for shock wave overpressure considering the effect of altitude.The data analysis results show that at the same TNT equivalent and the same distance from the measuring point,the shock wave overpressure at high altitude is lower than that at low altitude.With the increase in the explosion center distance of the measuring point,the peak attenuation rate of the shock wave overpressure at high altitudes is smaller than that at low altitudes,and the peak attenuation rate of the shock wave overpressure at high altitudes gradually intensifies with increasing proportional distance.The average error between the shock wave overpressure and measured shock wave overpressure in a high-altitude environment obtained by using the above calculation formula is 11.1389%.Therefore,this method can effectively predict explosion shock wave overpressure in plateau environments and provides an effective calculation method for practical engineering tests.展开更多
Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function...Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.展开更多
The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and ...The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and failure.In this paper,a self-developed stress-gas coupling failure infrared experimental system was used to analyse the infrared radiation temperature(IRT)and infrared thermal image precursor characteristics of gas-free coal and gas-bearing coal.The changes in the areas of the infrared temperature anomalous precursor regions and the effect of the gas on the infrared precursors were examined.The results show that high-temperature anomalous precursors arise mainly when the gas-free coal fails under loading,whereas the gas-bearing coal has high-temperature and low-temperature anomalous precursors.The area of the high-temperature anomalous precursor is approximately 30%–40%under gasbearing coal unstable failure,which is lower than the 60%–70%of the gas-free coal.The area of the low-temperature abnormal precursor is approximately 3%–6%,which is higher than the 1%–2%of the gas-free coal.With increasing gas pressure,the area of the high-temperature anomalous precursor gradually decreases,and the area of the low-temperature anomalous precursor gradually increases.The highand low-temperature anomalous precursors of gas-bearing coal are mainly caused by gas desorption,volume expansion,and thermal friction.The presence of gas inhibits the increase in IRT on the coal surface and increases the difficulty of infrared radiation(IR)monitoring and early warning for gas-bearing coal.展开更多
Gravitation is still the least understood interaction among the fundamental forces of Nature. A new theory that explains the mechanism of gravitation and the origin Newton’s laws of gravitation and general relativity...Gravitation is still the least understood interaction among the fundamental forces of Nature. A new theory that explains the mechanism of gravitation and the origin Newton’s laws of gravitation and general relativity and distinguishes between two of the Newton’s laws has been proposed. It is shown that the vortex formation created during the Big Bang event is the origin of the gravitational force. The vortex curves the vacuum (space-time) around it, attract and condense energy and dust to its center to form the mass. The gradient pressure in the vortex creates a flow that upon interaction with an object transfers a part of its momentum to the object and pushes it toward the center. The force exercised on the object is equivalent to Newton’s second law. The force of attraction between two vortices is equivalent to Newton’s third law. The drag force between the energy flow of the vortex and the static vacuum diminishes the gravitational force and is equivalent to the G constant. The proposed theory could provide new interesting insights for a comprehensive understanding of gravitation and represents a theoretical starting point for the engineering of anti-gravitation technology.展开更多
According to the measured data of typhoons going over the Chinese coasts in 1949-2002, a statistic relative equation showing the relation between the central atmospheric pressure of typhoons in a certain region at a...According to the measured data of typhoons going over the Chinese coasts in 1949-2002, a statistic relative equation showing the relation between the central atmospheric pressure of typhoons in a certain region at a certain period of time and their accumulation of frequency is established, and the concept of recurrence interval of typhoons is put forward, which is of actual significance for typhoon disaster reduction along the coastal area.展开更多
To study the distribution characteristics and similarity laws of nuclei under different pressures,based on the selfdesigned decompression chamber and the acoustic measuring system,the size distributions of nuclei in t...To study the distribution characteristics and similarity laws of nuclei under different pressures,based on the selfdesigned decompression chamber and the acoustic measuring system,the size distributions of nuclei in the degassed tap water under negative ambient pressures were measured.A number density distribution function of nuclei based on the modified Weibull distribution function was proposed and verified by the experimental measurement results and some published data of nuclei size distribution.Based on this nuclei number density distribution function,the similarity law of the nuclei size distribution was analyzed:in the scale experiment,the value of exponential in the similarity law of the nuclei number density should be determined by the nuclei size distribution of the water in the prototype experiment and the actual nuclei size distribution of the water in the model experiment.And a precondition is that the nuclei size distributions are similar.展开更多
The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal ener...The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal energy change had not any relation with the volume and pressure, we could confirm the first law of thermodynamics in theory. Simultaneously, the internal energy change is the state function that shall be able to be proved in theory. If the internal energy change depended on the volume and pressure, we could not prove that the internal energy change is the state function and the chemical thermodynamics theory is right. The extended or modified Bernoulli equation can be derived from the energy conservation law, and the internal energy change, heat, and friction are all considered in the derivation procedure. The extended Bernoulli equation could be applied to the flying aircraft and mechanical motion on the gravitational field, for instance, the rocket and airplane and so on. This paper also revises some wrong ideas, viewpoints, or concepts about the thermodynamics theory and Bernoulli equation.展开更多
The traditional thermodynamic theory explains the reversible phenomena quite well, except that reversible phenomena are rare or even impossible in practice. Here the purpose is to propose an explanation valid for reve...The traditional thermodynamic theory explains the reversible phenomena quite well, except that reversible phenomena are rare or even impossible in practice. Here the purpose is to propose an explanation valid for reversible and also irreversible phenomena, irreversibility being common or realistic. It previously exposed points tricky to grasp, as the sign of the work exchange, the adiabatic expansion in vacuum (free expansion) or the transfer of heat between two bodies at the same temperature (isothermal transfer). After having slightly modified the concepts of heat transfer (each body produces heat according to its own temperature) and work (distinguishing external pressure from internal pressure), the previous points are more easily explained. At last, an engine efficiency in case of irreversible transfer is proposed. This paper is focused on the form of thermodynamics, on “explanations”;it does not question on “results” (except the irreversible free expansion of 1845...) which remain unchanged.展开更多
We demonstrate how to extract the Planck length from hydrostatic pressure without relying on any knowledge of Newton’s gravitational constant, G. By measuring the pressure from a water column, we can determine the Pl...We demonstrate how to extract the Planck length from hydrostatic pressure without relying on any knowledge of Newton’s gravitational constant, G. By measuring the pressure from a water column, we can determine the Planck length without requiring knowledge of either G or the Planck constant. This experiment is simple to perform and cost-effective, making it not only of interest to researchers studying gravity but also suitable for low-budget educational settings. Despite its simplicity, this has never been demonstrated to be possible before, and it is achievable due to new theoretical insights into gravity and its connection to quantum gravity and the Planck scale. This provides new insights into fluid mechanics and the Planck scale. We are also exploring initial concepts related to what we are calling “Planck fluid”, which could potentially play a central role in quantum gravity and quantum fluid mechanics.展开更多
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
A novel numerical method to lubricate a conventional finite diameterconical-cylindrical bearing with a non-Newtonian lubricant, while adhering to the power-law model,is presented. The elastic deformation of bearing an...A novel numerical method to lubricate a conventional finite diameterconical-cylindrical bearing with a non-Newtonian lubricant, while adhering to the power-law model,is presented. The elastic deformation of bearing and varied viscosity of lubrication due to thepressure distribution of film thickness are also considered. Simulation results indicate that thenormal load carrying capacity is more pronounced for higher values of flow behavior index n, highereccentricity ratios and larger misalignment factors. It is found that the viscosity-pressure to theeffect of lubricant viscosity is significant.展开更多
We address the flow of incompressible fluid with a pressure-dependent viscosity through a pipe with helical shape. The viscosity-pressure relation is defined by the Barus law. The thickness of the pipe and the helix s...We address the flow of incompressible fluid with a pressure-dependent viscosity through a pipe with helical shape. The viscosity-pressure relation is defined by the Barus law. The thickness of the pipe and the helix step are assumed to be of the same order and considered as the small parameter. After transforming the starting problem, we compute the asymptotic solution using curvilinear coordinates and standard perturbation technique. The solution is provided in the explicit form clearly showing the influence of viscosity-pressure dependence and pipe's geometry on the effective flow.展开更多
The limitations in existing measures for absorbing pressure impact in hydraulic systems were summarized in this paper. Based on the forming principle of the oil in a hydrostatic closed pressure chamber, the underlying...The limitations in existing measures for absorbing pressure impact in hydraulic systems were summarized in this paper. Based on the forming principle of the oil in a hydrostatic closed pressure chamber, the underlying reasons of the pressure impact were analyzed theoretically, the intrinsic laws that the extent of the pressure impact in hydraulic oil lines are affected by some factors, such as oil elastic modulus, oil line's geometrical volume, and changing rate of oil volume versus time etc, were discussed. Experimental investigations into pressure impact in all pressure chambers because of shifting were conducted under different working conditions by employing a special experimental system. The effects of shifting time on pressure impact were studied. A new concept with universal meaning, i.e. optimal shifting time, and its characterizing parameter and the methods of shifting at optimal shifting time were also proposed. The results show that shifting time lag △t is of rationality and maneuverablility. The higher the working pressure, the shorter the shifting time.展开更多
文摘Based on a large amount of field investigation and observations, the paper analyzes and summarizes the mining depths and depth distribution of coal mines in China, discusses the characteristics of undrground pressure appearance in the entries of deep mining, points out some characteristics of surtounding rocks when rHo> =0.5, such as obvious rheologital deformation,and puts forward the main principles of supporting the entries in deep mining
基金Supported by the PetroChina Science and Technology Project(2023ZG18).
文摘The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China (Nos.U1402271, 51504058, and 51504059)
文摘The multiphase reaction process of pressure leaching is mainly carried out in the liquid phase. Therefore, gas holdup is essential for the gas–liquid–solid phase reaction and the extraction rate of valuable metals. In this paper, a transparent quartz autoclave, a six blades disc turbine-type agitator, and a high-speed camera were used to investigate the gas holdup of the pressure leaching process. Furthermore, experiments determining the effects of agitation rate, temperature, and oxygen partial pressure on gas holdup were carried out. The results showed that when the agitation rate increased from 350 to 600 r/min, the gas holdup increased from 0.10% to 0.64%. When the temperature increased from 363 to 423 K, the gas holdup increased from 0.14% to 0.20%. When the oxygen partial pressure increased from 0.1 to 0.8 MPa, the gas holdup increased from 0.13% to 0.19%. A similar criteria relationship was established by Homogeneous Principle and Buckingham's theorem. Comprehensively, empirical equation of gas holdup was deduced on the basis of experimental data and the similarity theory, where the criterion equation was determined as ε=4.54×10^(-11)n^(3.65)T^(2.08)P_g^(0.18). It can be seen from the formula that agitation rate made the most important impact on gas holdup in the pressure leaching process using the mixed-flow agitator.
基金This work is financially supported by the National Natural Science Foundation Project(No.51374222)National Major Project(No.2017ZX05032004-002)+2 种基金the National Key Basic Research&Development Program(No.2015CB250905)CNPC’s Major Scientific and Technological Project(No.2017E-0405)SINOPEC Major Scientific Research Project(No.P18049-1).
文摘Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir.In this study,dedicated experiments and theoretical arguments based on the visualization of porous media are used to assess the effects of the fracture angle,spacing,and relevant elastic parameters on the principal value of the permeability tensor.The fracture apertures at different angles show different change rates,which influence the relative permeability for different sets of fractures.Furthermore,under the same pressure condition,the fractures with different angles show different degrees of deformation so that the principal value direction of permeability rotates.This phenomenon leads to a variation in the water seepage direction in typical water-injection applications,thereby hindering the expected exploitation effect of the original well network.Overall,the research findings in this paper can be used as guidance to improve the effectiveness of water injection exploitation in the oil field industry.
基金supported by the National Natural Science Foundation of China ( 11732001)
文摘Vascular diseases such as aneurysm,hemadostenosis,aortic dissection are the primary causes of people’s death around world.As a result,it is significant to improve our knowledge about them,which can help to treat the disease.Measuring the hemodynamic factor like the blood pressure,the wall shear stress(WSS)and the oscillatory shear index(OSI)is,however,still beyond the capabilities of in-vivo measurement techniques.So the use of mathematical models and numerical simulations for the studies of the blood flow in arteries and,in general,of the cardiovascular system,both in physiological and pathological conditions,has received an increasing attention in the biomedical community during the last two decades.Indeed,such studies aims at enhancing the current knowledge of the physiology of the cardiovascular system,as well as providing reliable tools for the medical doctors to predict the natural course of pathologies and,possibly,the occurrence of cardiovascular accidents.The computational vascular fluid-structure interaction(FSI)methodology is a numerical simulation method which is used to explain the hemodynamic factors.The WSS on the luminal wall and the mechanical stress in the vascular wall are directly related to the location of the lesion,and the blood flow strongly interacts with the vascular wall motion.The arterial wall continually adapts to the charge of its mechanical environment(due to,for example,growth,atrophy,remodelling,repair,ageing,and disease)and consequently undergoes several irreversible processes.Primary acute mechanisms of vascularFSI numerical simulation seem to be associated with(1)the arterial histology and the patient-specific complex geometry,(2)the typical mechanical properties of the layer,(3)properties of the blood is assumed as Newtonian fluid or non-Newtonian fluid based on the scale ofthe diameter of a vessel,(4)residual stress in the zero-pressure configuration.The arterial system naturally function under permanent physiological loading conditions.Fung defined the residual stress and measured the opening angle which varies greatly along the aortic tree.Consequently,most of these systems never experience a stress-free state in their’service life’,so a stress and strain fields are present in any in vivo obtained patientspecific cardiovascular geometry.The residual stress always be ignored in FSI simulation or be assumed to equal zero,and the vivo patient-specific artery geometry is assumed as zero-pressure configuration.To define the in vivo stress state of artery,an inverse problem needs to be solved:the undeformed shape of a body or its stress state in its deformed state needs to be determined given the deformed configuration and the loads causing this deformation.The modular inverse elastostatics method is used to resolve the pressure-induced stress state for in vivo imaging based on cardiovascular modeling proposed by Peirlinck.Here,we build a living vessel FSI model based on 4 key factors.In order to get the universal simulation results,we focus on idealized geometries of the vessel that represent healthy(physiological)conditions of the cerebral vasculature.Blood can be assumed as the Newtonian fluid at this scale.The anisotropic hyperelastic constitutive law(Gasser-Holzapfel-Ogden)is used in zero-pressure configuration.Afterwards,we propose the material parameters for the different constitutive models and the computational configurations.We demonstrate the importance of introducing the residual stress into vascular blood flow modeling by performing a comparing zero-pressure configuration and no-resistance configuration.We get the conclusion that the zero-pressure status model has smaller displacement and larger stress distribution compared with no-resistance stress model.Hence,the methodology presented here will be particularly useful to study the mechanobiological processes in the healthy and diseased vascular wall.
文摘The propagation of shock wave pressure in the tunnel is greatly affected by the tunnel structure,shape,material and other factors,and there are great differences in the propagation law of shock wave pressure in different kinds of tunnels.In order to study the propagation law of shock wave pressure in tunnels with different materials,taking the long straight tunnel with the square section as an example,the AUTODYN software is used to simulate the explosion of TNT in the concrete,steel and granite tunnel,and study on the variation law of shock wave pressure in tunnels with different materials.By using dimensional analysis and combined with the results of numerical simulation,a mathematical model of the propagation law of shock wave pressure in the tunnel is established,and the effectiveness of the mathematical model is verified by making the explosion test of the warhead in the reinforce concrete tunnel.The results show that the same mass of TNT explodes in the tunnel with different materials,and the shock wave overpressure peak at the same measuring point is approximate in the near field.However,there is a significant difference in the middle-far fields from the explosion center,the shock wave overpressure peak in the steel tunnel is 20.76%and 34.82%higher than that of the concrete and the granite tunnel respectively,and the shock wave overpressure peak in the concrete tunnel is 24.91%higher than that in the granite tunnel.Through the experimental verification,getting the result that the maximum relative deviation between the measured value and the calculated value of the shock wave overpressure peak is 11.85%.Therefore,it is proved that the mathematical model can be used to predict the shock wave overpressure peak in the tunnel with different materials,and it can provide some reference for the power evaluation of warhead explosion in the tunnel.
文摘There are great differences in the distribution characteristics of shock waves produced by ammunition explosions at different altitudes.At present,there are many studies on plain explosion shock waves,but there are few studies on the distribution characteristics of plateau explosion shock waves,and there is still a lack of complete analysis and evaluation methods.This paper compares and analyzes shock wave overpressure data at different altitudes,obtains the attenuation effect of different altitudes on the shock wave propagation process and proposes a calculation formula for shock wave overpressure considering the effect of altitude.The data analysis results show that at the same TNT equivalent and the same distance from the measuring point,the shock wave overpressure at high altitude is lower than that at low altitude.With the increase in the explosion center distance of the measuring point,the peak attenuation rate of the shock wave overpressure at high altitudes is smaller than that at low altitudes,and the peak attenuation rate of the shock wave overpressure at high altitudes gradually intensifies with increasing proportional distance.The average error between the shock wave overpressure and measured shock wave overpressure in a high-altitude environment obtained by using the above calculation formula is 11.1389%.Therefore,this method can effectively predict explosion shock wave overpressure in plateau environments and provides an effective calculation method for practical engineering tests.
文摘Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.
基金supported by the National Natural Science Foundation of China(No.52074280)the National Natural Science Foundation of China(No.52004016)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and failure.In this paper,a self-developed stress-gas coupling failure infrared experimental system was used to analyse the infrared radiation temperature(IRT)and infrared thermal image precursor characteristics of gas-free coal and gas-bearing coal.The changes in the areas of the infrared temperature anomalous precursor regions and the effect of the gas on the infrared precursors were examined.The results show that high-temperature anomalous precursors arise mainly when the gas-free coal fails under loading,whereas the gas-bearing coal has high-temperature and low-temperature anomalous precursors.The area of the high-temperature anomalous precursor is approximately 30%–40%under gasbearing coal unstable failure,which is lower than the 60%–70%of the gas-free coal.The area of the low-temperature abnormal precursor is approximately 3%–6%,which is higher than the 1%–2%of the gas-free coal.With increasing gas pressure,the area of the high-temperature anomalous precursor gradually decreases,and the area of the low-temperature anomalous precursor gradually increases.The highand low-temperature anomalous precursors of gas-bearing coal are mainly caused by gas desorption,volume expansion,and thermal friction.The presence of gas inhibits the increase in IRT on the coal surface and increases the difficulty of infrared radiation(IR)monitoring and early warning for gas-bearing coal.
文摘Gravitation is still the least understood interaction among the fundamental forces of Nature. A new theory that explains the mechanism of gravitation and the origin Newton’s laws of gravitation and general relativity and distinguishes between two of the Newton’s laws has been proposed. It is shown that the vortex formation created during the Big Bang event is the origin of the gravitational force. The vortex curves the vacuum (space-time) around it, attract and condense energy and dust to its center to form the mass. The gradient pressure in the vortex creates a flow that upon interaction with an object transfers a part of its momentum to the object and pushes it toward the center. The force exercised on the object is equivalent to Newton’s second law. The force of attraction between two vortices is equivalent to Newton’s third law. The drag force between the energy flow of the vortex and the static vacuum diminishes the gravitational force and is equivalent to the G constant. The proposed theory could provide new interesting insights for a comprehensive understanding of gravitation and represents a theoretical starting point for the engineering of anti-gravitation technology.
基金Natural Science Foundation of Zhejiang Province No.402034 No.ZE0204
文摘According to the measured data of typhoons going over the Chinese coasts in 1949-2002, a statistic relative equation showing the relation between the central atmospheric pressure of typhoons in a certain region at a certain period of time and their accumulation of frequency is established, and the concept of recurrence interval of typhoons is put forward, which is of actual significance for typhoon disaster reduction along the coastal area.
基金financially supported by the Foundation Strengthening Program Technical Area Fund(Grant No.2019-JCJQ-JJ-293)。
文摘To study the distribution characteristics and similarity laws of nuclei under different pressures,based on the selfdesigned decompression chamber and the acoustic measuring system,the size distributions of nuclei in the degassed tap water under negative ambient pressures were measured.A number density distribution function of nuclei based on the modified Weibull distribution function was proposed and verified by the experimental measurement results and some published data of nuclei size distribution.Based on this nuclei number density distribution function,the similarity law of the nuclei size distribution was analyzed:in the scale experiment,the value of exponential in the similarity law of the nuclei number density should be determined by the nuclei size distribution of the water in the prototype experiment and the actual nuclei size distribution of the water in the model experiment.And a precondition is that the nuclei size distributions are similar.
文摘The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal energy change had not any relation with the volume and pressure, we could confirm the first law of thermodynamics in theory. Simultaneously, the internal energy change is the state function that shall be able to be proved in theory. If the internal energy change depended on the volume and pressure, we could not prove that the internal energy change is the state function and the chemical thermodynamics theory is right. The extended or modified Bernoulli equation can be derived from the energy conservation law, and the internal energy change, heat, and friction are all considered in the derivation procedure. The extended Bernoulli equation could be applied to the flying aircraft and mechanical motion on the gravitational field, for instance, the rocket and airplane and so on. This paper also revises some wrong ideas, viewpoints, or concepts about the thermodynamics theory and Bernoulli equation.
文摘The traditional thermodynamic theory explains the reversible phenomena quite well, except that reversible phenomena are rare or even impossible in practice. Here the purpose is to propose an explanation valid for reversible and also irreversible phenomena, irreversibility being common or realistic. It previously exposed points tricky to grasp, as the sign of the work exchange, the adiabatic expansion in vacuum (free expansion) or the transfer of heat between two bodies at the same temperature (isothermal transfer). After having slightly modified the concepts of heat transfer (each body produces heat according to its own temperature) and work (distinguishing external pressure from internal pressure), the previous points are more easily explained. At last, an engine efficiency in case of irreversible transfer is proposed. This paper is focused on the form of thermodynamics, on “explanations”;it does not question on “results” (except the irreversible free expansion of 1845...) which remain unchanged.
文摘We demonstrate how to extract the Planck length from hydrostatic pressure without relying on any knowledge of Newton’s gravitational constant, G. By measuring the pressure from a water column, we can determine the Planck length without requiring knowledge of either G or the Planck constant. This experiment is simple to perform and cost-effective, making it not only of interest to researchers studying gravity but also suitable for low-budget educational settings. Despite its simplicity, this has never been demonstrated to be possible before, and it is achievable due to new theoretical insights into gravity and its connection to quantum gravity and the Planck scale. This provides new insights into fluid mechanics and the Planck scale. We are also exploring initial concepts related to what we are calling “Planck fluid”, which could potentially play a central role in quantum gravity and quantum fluid mechanics.
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.
文摘A novel numerical method to lubricate a conventional finite diameterconical-cylindrical bearing with a non-Newtonian lubricant, while adhering to the power-law model,is presented. The elastic deformation of bearing and varied viscosity of lubrication due to thepressure distribution of film thickness are also considered. Simulation results indicate that thenormal load carrying capacity is more pronounced for higher values of flow behavior index n, highereccentricity ratios and larger misalignment factors. It is found that the viscosity-pressure to theeffect of lubricant viscosity is significant.
基金supported by the Croatian Science Foundation(scientific project 3955:Mathematical modeling and numerical simulations of processes in thin or porous domains)
文摘We address the flow of incompressible fluid with a pressure-dependent viscosity through a pipe with helical shape. The viscosity-pressure relation is defined by the Barus law. The thickness of the pipe and the helix step are assumed to be of the same order and considered as the small parameter. After transforming the starting problem, we compute the asymptotic solution using curvilinear coordinates and standard perturbation technique. The solution is provided in the explicit form clearly showing the influence of viscosity-pressure dependence and pipe's geometry on the effective flow.
文摘The limitations in existing measures for absorbing pressure impact in hydraulic systems were summarized in this paper. Based on the forming principle of the oil in a hydrostatic closed pressure chamber, the underlying reasons of the pressure impact were analyzed theoretically, the intrinsic laws that the extent of the pressure impact in hydraulic oil lines are affected by some factors, such as oil elastic modulus, oil line's geometrical volume, and changing rate of oil volume versus time etc, were discussed. Experimental investigations into pressure impact in all pressure chambers because of shifting were conducted under different working conditions by employing a special experimental system. The effects of shifting time on pressure impact were studied. A new concept with universal meaning, i.e. optimal shifting time, and its characterizing parameter and the methods of shifting at optimal shifting time were also proposed. The results show that shifting time lag △t is of rationality and maneuverablility. The higher the working pressure, the shorter the shifting time.