The local density of optical states(LDOS)is an important physical concept,which can characterize the spontaneous emission of microcavities.In order to calculate the LDOS,the relationship between the mode spectrum and ...The local density of optical states(LDOS)is an important physical concept,which can characterize the spontaneous emission of microcavities.In order to calculate the LDOS,the relationship between the mode spectrum and the LDOS is established.Then,based on the transfer matrix method and the effective resonator model,the leaky loss of the leaky mode and the mode spectrum in the one-dimensional photonic bandgap crystal waveguide are calculated,results of which indicate that the mode spectrum can characterize the leaky loss of the leaky mode.At last,the density of optical states(DOS),and the LDOS in each layer are calculated.The partial DOS and the partial LDOS in the quantum well,related to the fundamental leaky mode,can be used to find out the optimal location of the quantum well in the defect layer to couple more useful photons into the lasing mode for lasers.展开更多
The local density of photonic states (LDPS) of an infinite two-dimensional (2D) photonic crystal (PC) composed of rotated square-pillars in a 2D square lattice is calculated in terms of the plane-wave expansion ...The local density of photonic states (LDPS) of an infinite two-dimensional (2D) photonic crystal (PC) composed of rotated square-pillars in a 2D square lattice is calculated in terms of the plane-wave expansion method in a combination with the point group theory. The calculation results show that the LDPS strongly depends on the spatial positions. The variations of the LDPS as functions of the radial coordinate and frequency exhibit “mountain chain” structures with sharp peaks. The LDPS with large value spans a finite area and falls abruptly down to small value at the position corresponding to the interfaces between two different refractive index materials. The larger/lower LDPS occurs inward the lower/larger dielectric-constant medium. This feature can be well interpreted by the continuity of electricdisplacement vector at the interface. In the frequency range of the pseudo-PBG (photonic band gap), the LDPS keeps very low value over the whole Wiger-Seitz cell. It indicates that the spontaneous emission in 2D PCs cannot be prohibited completely, but it can be inhibited intensively when the resonate frequency falls into the pseudo-PBG.展开更多
The local density of states (LDOS) of two-dimensional square lattice photonic crystal (PhC) defect cavity is studied. The results show that the LDOS in the centre is greatly reduced, while the LDOS at the point of...The local density of states (LDOS) of two-dimensional square lattice photonic crystal (PhC) defect cavity is studied. The results show that the LDOS in the centre is greatly reduced, while the LDOS at the point off the centre (for example, at the point (0.3a, 0.4a), where a is the lattice constant) is extremely enhanced. Further, the disordered radii are introduced to imitate the real devices fabricated in our experiment, and then we study the LDOS of PhC cavity with configurations of different disordered radii. The results show that in the disordered cavity, the LDOS in the centre is still greatly reduced, while the LDOS at the point (0.3a, 0.4a) is still extremely enhanced. It shows that the LDOS analysis is useful. When a laser is designed on the basis of the square lattice PhC rod cavity, in order to enhance the spontaneous emission, the active materials should not be inserted in the centre of the cavity, but located at positions off the centre. So LDOS method gives a guide to design the positions of the active materials (quantum dots) in the lasers.展开更多
The single-particle Green's function for a dc-biased superlattices with single impurity potential varying harmonically with time has been obtained in the framework of U(t,t') method and Floquet-Green's function. ...The single-particle Green's function for a dc-biased superlattices with single impurity potential varying harmonically with time has been obtained in the framework of U(t,t') method and Floquet-Green's function. The calculation of the local density of states shows that new states will emerge between the resonant Wannier-Stark states as a result of the intervention of time-dependent impurity potential, and the increase in electric field strength of impurity will result in the growing of the number of new states between the gaps of neighbouring Stark ladders.展开更多
The dc conductivity in vacuum evaporated amorphous thin films of the glassy alloys Se100–xZnx(2 ≤ x ≤ 20) are meas-ured in the temperature range (308 - 388 K). The dc conductivity (σdc) is increases with increased...The dc conductivity in vacuum evaporated amorphous thin films of the glassy alloys Se100–xZnx(2 ≤ x ≤ 20) are meas-ured in the temperature range (308 - 388 K). The dc conductivity (σdc) is increases with increased of Zn concentration in the glassy alloys. The activation energy (ΔE) decreases with increase of Zn content. The conduction is explained on the basis of localized state in the mobility gap. To study the effect of electric field, a Current-Voltage characteristic has been measured at various fixed temperatures. The Current-Voltage data are fitted into the theory of space charge limited conduction in case of uniform distribution of traps in mobility gap at high electric fields (E ~104 V/cm) of these materials. The density of localized state (g0) are estimated by fitting in theory of space charge limited conduction (SCLC) at the temperature range of (352 - 372 K) in the glassy Se100–xZnx. The density of localized state (0) near the Fermi level are increases with increase of Zn concentration in the (Se100–xZnx) thin films and explain on the basis of increase of the Zn-Se bond.展开更多
The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states...The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states.The large-scale calculation of vortex bound states is introduced in the presence of fourfold or twofold Fermi surface by solving the Bogoliubov–de Gennes(BdG)equations.Two kinds of quasiparticles’behaviors can be extracted from the local density of states(LDOS)around a vortex.The angle-dependent quasiparticles will move from high energy to low energy when the angle varies from curvature maxima to minima of the Fermi surface,while the angle-independent quasiparticles tend to stay at a relatively higher energy.In addition,the weight of angle-dependent quasiparticles can be enhanced by the increasing anisotropy degree of Fermi surface.展开更多
Density functional theory(DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C–C bond activation.A comprehensive description of the reaction mechanisms leading to two different r...Density functional theory(DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C–C bond activation.A comprehensive description of the reaction mechanisms leading to two different reaction products is presented.We report a complete exploration of the potential energy surfaces by taking into consideration different spin states.In addition,the intermediate and transition states along the reaction paths are characterized.Total,partial,and overlap population density of state diagrams and analyses are also presented.Furthermore,the natures of the chemical bonding of intermediate and transition states are studied by using topological method combined with electron localization function(ELF) and Mayer bond order.Infrared spectrum(IR) is obtained and further discussed based on the optimized geometries.展开更多
We study the local density of states (LDOS) for electrons scattering off the line edge of an atomic step defect on the surface of a three-dimensional (3D) topological insulator (TI) and the line edge of a finite...We study the local density of states (LDOS) for electrons scattering off the line edge of an atomic step defect on the surface of a three-dimensional (3D) topological insulator (TI) and the line edge of a finite 3D TI, where the front surface and side surface meet with different Fermi velocities, respectively. By using a S-function potential to model the edges, we find that the bound states existed along the step line edge significantly contribute to the LDOS near the edge, but do not modify the exponential behavior away from it. In addition, the power-law decaying behavior for LDOS oscillation away from the step is understood from the spin rotation for surface states scattering off the step defect with magnitude depending on the strength of the potential. Furthermore, the electron refraction and total reflection analogous to optics occurred at the line edge where two surfaces meet with different Fermi velocities, which leads to the LDOS decaying behavior in the greater Fermi velocity side similar to that for a step line edge. However, in the smaller velocity side the LDOS shows a different decaying behavior as x-1/2, and the wavevector of LDOS oscillation is no longer equal to the diameter of the constant energy contour of surface band, but is sensitively dependent on the ratio of the two Fermi velocities. These effects may be verified by STM measurement with high precision.展开更多
This research paper is on Density Functional Theory (DFT) within Local Density Approximation. The calculation was performed using Fritz Haber Institute Ab-initio Molecular Simulations (FHIAIMS) code based on numerical...This research paper is on Density Functional Theory (DFT) within Local Density Approximation. The calculation was performed using Fritz Haber Institute Ab-initio Molecular Simulations (FHIAIMS) code based on numerical atomic-centered orbital basis sets. The electronic band structure, total density of state (DOS) and band gap energy were calculated for Gallium-Arsenide and Aluminium-Arsenide in diamond structures. The result of minimum total energy and computational time obtained from the experimental lattice constant 5.63 A for both Gallium Arsenide and Aluminium Arsenide is -114,915.7903 eV and 64.989 s, respectively. The electronic band structure analysis shows that Aluminium-Arsenide is an indirect band gap semiconductor while Gallium-Arsenide is a direct band gap semiconductor. The energy gap results obtained for GaAs is 0.37 eV and AlAs is 1.42 eV. The band gap in GaAs observed is very small when compared to AlAs. This indicates that GaAs can exhibit high transport property of the electron in the semiconductor which makes it suitable for optoelectronics devices while the wider band gap of AlAs indicates their potentials can be used in high temperature and strong electric fields device applications. The results reveal a good agreement within reasonable acceptable errors when compared with the theoretical and experimental values obtained in the work of Federico and Yin wang [1] [2].展开更多
The local density of states (LDOS) around two nonmagnetic impurities which are located at different sites is studied within the two-dimensional t-J-U model. The order parameters are determined in a self-consistent w...The local density of states (LDOS) around two nonmagnetic impurities which are located at different sites is studied within the two-dimensional t-J-U model. The order parameters are determined in a self-consistent way with the Gutzwiller projected mean-field approximation and the Bogoliubov-de Gennes theory. When the two impurities are located one or two sites away, we find the supercon- ductivity coherence peaks are more strongly suppressed and the zero-energy peak (ZEP) has split into two peaks. Whereas when the two impurities are located next to each other, the ZEP vanished, and LDOS does not change a lot compared with the case away from the impurities.展开更多
Local radiative density of optical states (LDOS) offers a tool to control the radiative rate of spontaneous emission from molecules, atoms, and quan- tum dots, which is proportional to LDOS. This paper presents that...Local radiative density of optical states (LDOS) offers a tool to control the radiative rate of spontaneous emission from molecules, atoms, and quan- tum dots, which is proportional to LDOS. This paper presents that LDOS how to make the population of excited-state decay exponentially in time, and how these dynamics can be affected. By adopting the plane-wave expansion method, properties of an inverse-opal photonic crystal are studied with the help of photonic dispersion relations. Results in this paper show that the LDOS is radically modified in photonic crystal, and the rate of spontaneous emission can be described by the functions of position in the crystal and orientation of transition dipole moment.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA1400604 and 2021YFB2801400)the National Natural Science Foundation of China(Grant Nos.91850206,62075213,62135001,and 62205328)。
文摘The local density of optical states(LDOS)is an important physical concept,which can characterize the spontaneous emission of microcavities.In order to calculate the LDOS,the relationship between the mode spectrum and the LDOS is established.Then,based on the transfer matrix method and the effective resonator model,the leaky loss of the leaky mode and the mode spectrum in the one-dimensional photonic bandgap crystal waveguide are calculated,results of which indicate that the mode spectrum can characterize the leaky loss of the leaky mode.At last,the density of optical states(DOS),and the LDOS in each layer are calculated.The partial DOS and the partial LDOS in the quantum well,related to the fundamental leaky mode,can be used to find out the optimal location of the quantum well in the defect layer to couple more useful photons into the lasing mode for lasers.
基金Project supported by National Key Basic Research Special Fund of China and by Natural Science Foundation of Beijing, China.
文摘The local density of photonic states (LDPS) of an infinite two-dimensional (2D) photonic crystal (PC) composed of rotated square-pillars in a 2D square lattice is calculated in terms of the plane-wave expansion method in a combination with the point group theory. The calculation results show that the LDPS strongly depends on the spatial positions. The variations of the LDPS as functions of the radial coordinate and frequency exhibit “mountain chain” structures with sharp peaks. The LDPS with large value spans a finite area and falls abruptly down to small value at the position corresponding to the interfaces between two different refractive index materials. The larger/lower LDPS occurs inward the lower/larger dielectric-constant medium. This feature can be well interpreted by the continuity of electricdisplacement vector at the interface. In the frequency range of the pseudo-PBG (photonic band gap), the LDPS keeps very low value over the whole Wiger-Seitz cell. It indicates that the spontaneous emission in 2D PCs cannot be prohibited completely, but it can be inhibited intensively when the resonate frequency falls into the pseudo-PBG.
基金supported by the National Basic Research Program of China (Grant No. 2006CB921705)the National Natural Science Foundation of China (Grant Nos. 10634080,60677046 and 60838003)the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z410 and 2007AA03Z408)
文摘The local density of states (LDOS) of two-dimensional square lattice photonic crystal (PhC) defect cavity is studied. The results show that the LDOS in the centre is greatly reduced, while the LDOS at the point off the centre (for example, at the point (0.3a, 0.4a), where a is the lattice constant) is extremely enhanced. Further, the disordered radii are introduced to imitate the real devices fabricated in our experiment, and then we study the LDOS of PhC cavity with configurations of different disordered radii. The results show that in the disordered cavity, the LDOS in the centre is still greatly reduced, while the LDOS at the point (0.3a, 0.4a) is still extremely enhanced. It shows that the LDOS analysis is useful. When a laser is designed on the basis of the square lattice PhC rod cavity, in order to enhance the spontaneous emission, the active materials should not be inserted in the centre of the cavity, but located at positions off the centre. So LDOS method gives a guide to design the positions of the active materials (quantum dots) in the lasers.
基金Project supported by the Natural Science Foundation of Shanxi Province (Grant No 20031006).
文摘The single-particle Green's function for a dc-biased superlattices with single impurity potential varying harmonically with time has been obtained in the framework of U(t,t') method and Floquet-Green's function. The calculation of the local density of states shows that new states will emerge between the resonant Wannier-Stark states as a result of the intervention of time-dependent impurity potential, and the increase in electric field strength of impurity will result in the growing of the number of new states between the gaps of neighbouring Stark ladders.
文摘The dc conductivity in vacuum evaporated amorphous thin films of the glassy alloys Se100–xZnx(2 ≤ x ≤ 20) are meas-ured in the temperature range (308 - 388 K). The dc conductivity (σdc) is increases with increased of Zn concentration in the glassy alloys. The activation energy (ΔE) decreases with increase of Zn content. The conduction is explained on the basis of localized state in the mobility gap. To study the effect of electric field, a Current-Voltage characteristic has been measured at various fixed temperatures. The Current-Voltage data are fitted into the theory of space charge limited conduction in case of uniform distribution of traps in mobility gap at high electric fields (E ~104 V/cm) of these materials. The density of localized state (g0) are estimated by fitting in theory of space charge limited conduction (SCLC) at the temperature range of (352 - 372 K) in the glassy Se100–xZnx. The density of localized state (0) near the Fermi level are increases with increase of Zn concentration in the (Se100–xZnx) thin films and explain on the basis of increase of the Zn-Se bond.
基金the National Natural Science Foundation of China(Grant No.11804154)Scientific Research Foundation of NJIT(Grant No.YKJ201853).
文摘The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states.The large-scale calculation of vortex bound states is introduced in the presence of fourfold or twofold Fermi surface by solving the Bogoliubov–de Gennes(BdG)equations.Two kinds of quasiparticles’behaviors can be extracted from the local density of states(LDOS)around a vortex.The angle-dependent quasiparticles will move from high energy to low energy when the angle varies from curvature maxima to minima of the Fermi surface,while the angle-independent quasiparticles tend to stay at a relatively higher energy.In addition,the weight of angle-dependent quasiparticles can be enhanced by the increasing anisotropy degree of Fermi surface.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21371160,21401173,and 11364023)
文摘Density functional theory(DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C–C bond activation.A comprehensive description of the reaction mechanisms leading to two different reaction products is presented.We report a complete exploration of the potential energy surfaces by taking into consideration different spin states.In addition,the intermediate and transition states along the reaction paths are characterized.Total,partial,and overlap population density of state diagrams and analyses are also presented.Furthermore,the natures of the chemical bonding of intermediate and transition states are studied by using topological method combined with electron localization function(ELF) and Mayer bond order.Infrared spectrum(IR) is obtained and further discussed based on the optimized geometries.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274108)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20114306110008)the Hunan Provincial Innovation Foundation for Postgraduates(Grant No.CX2012B204)
文摘We study the local density of states (LDOS) for electrons scattering off the line edge of an atomic step defect on the surface of a three-dimensional (3D) topological insulator (TI) and the line edge of a finite 3D TI, where the front surface and side surface meet with different Fermi velocities, respectively. By using a S-function potential to model the edges, we find that the bound states existed along the step line edge significantly contribute to the LDOS near the edge, but do not modify the exponential behavior away from it. In addition, the power-law decaying behavior for LDOS oscillation away from the step is understood from the spin rotation for surface states scattering off the step defect with magnitude depending on the strength of the potential. Furthermore, the electron refraction and total reflection analogous to optics occurred at the line edge where two surfaces meet with different Fermi velocities, which leads to the LDOS decaying behavior in the greater Fermi velocity side similar to that for a step line edge. However, in the smaller velocity side the LDOS shows a different decaying behavior as x-1/2, and the wavevector of LDOS oscillation is no longer equal to the diameter of the constant energy contour of surface band, but is sensitively dependent on the ratio of the two Fermi velocities. These effects may be verified by STM measurement with high precision.
文摘This research paper is on Density Functional Theory (DFT) within Local Density Approximation. The calculation was performed using Fritz Haber Institute Ab-initio Molecular Simulations (FHIAIMS) code based on numerical atomic-centered orbital basis sets. The electronic band structure, total density of state (DOS) and band gap energy were calculated for Gallium-Arsenide and Aluminium-Arsenide in diamond structures. The result of minimum total energy and computational time obtained from the experimental lattice constant 5.63 A for both Gallium Arsenide and Aluminium Arsenide is -114,915.7903 eV and 64.989 s, respectively. The electronic band structure analysis shows that Aluminium-Arsenide is an indirect band gap semiconductor while Gallium-Arsenide is a direct band gap semiconductor. The energy gap results obtained for GaAs is 0.37 eV and AlAs is 1.42 eV. The band gap in GaAs observed is very small when compared to AlAs. This indicates that GaAs can exhibit high transport property of the electron in the semiconductor which makes it suitable for optoelectronics devices while the wider band gap of AlAs indicates their potentials can be used in high temperature and strong electric fields device applications. The results reveal a good agreement within reasonable acceptable errors when compared with the theoretical and experimental values obtained in the work of Federico and Yin wang [1] [2].
基金Acknowledgements The authors would like to thank X. Yah and Dr. B. Liu for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant No. 10774082).
文摘The local density of states (LDOS) around two nonmagnetic impurities which are located at different sites is studied within the two-dimensional t-J-U model. The order parameters are determined in a self-consistent way with the Gutzwiller projected mean-field approximation and the Bogoliubov-de Gennes theory. When the two impurities are located one or two sites away, we find the supercon- ductivity coherence peaks are more strongly suppressed and the zero-energy peak (ZEP) has split into two peaks. Whereas when the two impurities are located next to each other, the ZEP vanished, and LDOS does not change a lot compared with the case away from the impurities.
基金supported by National Key R&D Program of China(Grant No.2022YFA1403201)National Natural Science Foundation of China(Grant No.12274205 and No.11874205).
文摘Local radiative density of optical states (LDOS) offers a tool to control the radiative rate of spontaneous emission from molecules, atoms, and quan- tum dots, which is proportional to LDOS. This paper presents that LDOS how to make the population of excited-state decay exponentially in time, and how these dynamics can be affected. By adopting the plane-wave expansion method, properties of an inverse-opal photonic crystal are studied with the help of photonic dispersion relations. Results in this paper show that the LDOS is radically modified in photonic crystal, and the rate of spontaneous emission can be described by the functions of position in the crystal and orientation of transition dipole moment.
基金supported by the National Natural Science Foundation of China(20903075,21273172)Program of Introducing Talents of Discipline to Universities,China(111 Project)(B08040)Northwestern Polytechnical University Foundation for Fundamental Research,China(JC20100226)~~