BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or to...BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process.展开更多
Objective: SPECT data from myocardial perfusion imaging (MPI) are normally displayed as a set of three slices orthogonal to the left ventricular (LV) long axis. For data presentation, the images are orientated about t...Objective: SPECT data from myocardial perfusion imaging (MPI) are normally displayed as a set of three slices orthogonal to the left ventricular (LV) long axis. For data presentation, the images are orientated about the LV long axis. Therefore, radial slices provide a suitable alternative to standard orthogonal slices, with the advantage of requiring fewer slices to adequately represent the data. In this study, a semi-automatic method is developed for displaying MPI SPECT data as a set of radial slices orientated about the LV axis. The aim is to reduce the number of slices viewed without loss of information and independently from the heart size. Method: Standard short axis slices, orientated perpendicular to the LV axis, are utilized.The skeleton of the segmented myocardium is found and the true LV axis is determined in each central long slice. The LV axis of the whole volume is determined by aligning the axes of all slices. Result: Radial slices centered about this axis were generated by integration over a sector equal to the resolution of the imaging system which was of the order of 1.2 cm. Therefore, assuming a mean LV diameter of 8 cm, 20 slices were sufficient to represent a non-gated study. Gated information could be adequately displayed with 4 slices integrated over an angle of 45. Conclusion: A semi-automatic method for generating radial slices from SPECT MPI short axis slices has been developed.展开更多
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China,No.2022YFA1105800the National Natural Science Foundation of China,No.81970940.
文摘BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process.
文摘Objective: SPECT data from myocardial perfusion imaging (MPI) are normally displayed as a set of three slices orthogonal to the left ventricular (LV) long axis. For data presentation, the images are orientated about the LV long axis. Therefore, radial slices provide a suitable alternative to standard orthogonal slices, with the advantage of requiring fewer slices to adequately represent the data. In this study, a semi-automatic method is developed for displaying MPI SPECT data as a set of radial slices orientated about the LV axis. The aim is to reduce the number of slices viewed without loss of information and independently from the heart size. Method: Standard short axis slices, orientated perpendicular to the LV axis, are utilized.The skeleton of the segmented myocardium is found and the true LV axis is determined in each central long slice. The LV axis of the whole volume is determined by aligning the axes of all slices. Result: Radial slices centered about this axis were generated by integration over a sector equal to the resolution of the imaging system which was of the order of 1.2 cm. Therefore, assuming a mean LV diameter of 8 cm, 20 slices were sufficient to represent a non-gated study. Gated information could be adequately displayed with 4 slices integrated over an angle of 45. Conclusion: A semi-automatic method for generating radial slices from SPECT MPI short axis slices has been developed.