The purpose of this study was to evaluate the long time antibacterial properties and shear bond strength of experimental nano silver-containing cements (NSC). Nano silver base inorganic antibacterial powder was adde...The purpose of this study was to evaluate the long time antibacterial properties and shear bond strength of experimental nano silver-containing cements (NSC). Nano silver base inorganic antibacterial powder was added to the reinforced glass ionomer cement at five different weight ratios to obtain a series of nano silver-containing cements, then the antibacterial properties of three orthodontic cement products and five NSC samples were evaluated by the direct contact test (DCT) and the agar diffusion test (ADT). The DCT, which was based on turbidness determination of bacterial growth in 96-well microtiter plates, was performed in both fresh and aged for 1 day, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks tested materials. The shear bond strengthes of three orthodontic cement products and five NSC samples were examined using a universal testing machine. The ADT results indicated that there were no significant differences between NSCs and ORTHO LC fresh specimens. In the DCT experiment, all fresh silver nanoparticles-containing tested samples presented powerful antibacterial properties, but they gradually lost the effective antimicrobial agents with the extension of aging time. Finally, none of the tested materials maintained its antibacterial property after aging for 8 weeks. A gradually decreasing trend of bond strength presented with the increasing incorporation of nano silver base inorganic antibacterial powder into the glass ionomer cement, even though all the tested material specimens reached the ideal bond strength range. We may conclude that NSCs can contribute to decrease the demineralization rate around brackets without compromising bond strength.展开更多
The surge in China's local government debt has made various sectors of society pay closer attention to the situation. First of all, four types of debt relations must be clarified: the relationship between asset and ...The surge in China's local government debt has made various sectors of society pay closer attention to the situation. First of all, four types of debt relations must be clarified: the relationship between asset and non-asset debt, the difference between long- term and short-term debt, the difference between debt in the form of bonds and debt in the form of bank loans, and the difference between debt listed in government budgets and other government debt. The development of long-term bonds is a fairly good choice for China to upgrade its consumption structure, accelerate urbanization, transform its economic development patterns, and meanwhile, to alleviate the mismatch between the financial powers of local governments and their administrative responsibilities.展开更多
White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phospha...White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP- rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P〉 0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as "1 min 3 times") exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P〉 0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times〉3 min 2 times〉 1 min 2 times〉6 min 1 time〉3 min 1 time〉 1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets.展开更多
基金Funded by the Natural Science Foundation of Hubei Province(No.2012FFB04416)
文摘The purpose of this study was to evaluate the long time antibacterial properties and shear bond strength of experimental nano silver-containing cements (NSC). Nano silver base inorganic antibacterial powder was added to the reinforced glass ionomer cement at five different weight ratios to obtain a series of nano silver-containing cements, then the antibacterial properties of three orthodontic cement products and five NSC samples were evaluated by the direct contact test (DCT) and the agar diffusion test (ADT). The DCT, which was based on turbidness determination of bacterial growth in 96-well microtiter plates, was performed in both fresh and aged for 1 day, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks tested materials. The shear bond strengthes of three orthodontic cement products and five NSC samples were examined using a universal testing machine. The ADT results indicated that there were no significant differences between NSCs and ORTHO LC fresh specimens. In the DCT experiment, all fresh silver nanoparticles-containing tested samples presented powerful antibacterial properties, but they gradually lost the effective antimicrobial agents with the extension of aging time. Finally, none of the tested materials maintained its antibacterial property after aging for 8 weeks. A gradually decreasing trend of bond strength presented with the increasing incorporation of nano silver base inorganic antibacterial powder into the glass ionomer cement, even though all the tested material specimens reached the ideal bond strength range. We may conclude that NSCs can contribute to decrease the demineralization rate around brackets without compromising bond strength.
文摘The surge in China's local government debt has made various sectors of society pay closer attention to the situation. First of all, four types of debt relations must be clarified: the relationship between asset and non-asset debt, the difference between long- term and short-term debt, the difference between debt in the form of bonds and debt in the form of bank loans, and the difference between debt listed in government budgets and other government debt. The development of long-term bonds is a fairly good choice for China to upgrade its consumption structure, accelerate urbanization, transform its economic development patterns, and meanwhile, to alleviate the mismatch between the financial powers of local governments and their administrative responsibilities.
基金supported by NIH R01 DE17974(Hockin HK Xu)National Science Foundation of China 81200820(to Xian-Ju Xie),81400487(to Lin Wang)+1 种基金Beijing Nova Program xx2014B060(to Xian-Ju Xie)University of Maryland School of Dentistry bridging fund(to Hockin HK Xu)
文摘White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP- rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P〉 0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as "1 min 3 times") exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P〉 0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times〉3 min 2 times〉 1 min 2 times〉6 min 1 time〉3 min 1 time〉 1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets.