The constructional methods of pandiagonal snowflake magic squares of orders 4m are established in paper [3]. In this paper, the constructional methods of pandiagonal snowflake magic squares of odd orders n are establi...The constructional methods of pandiagonal snowflake magic squares of orders 4m are established in paper [3]. In this paper, the constructional methods of pandiagonal snowflake magic squares of odd orders n are established with n = 6m+l, 6m+5 and 6m+3, m is an odd positive integer and m is an even positive integer 9|6m + 3. It is seen that the number sets for constructing pandiagonal snowflake magic squares can be extended to the matrices with symmetric partial difference in each direction for orders 6m + 1 , 6m + 5; to the trisection matrices with symmetric partial difference in each direction for order 6m + 3.展开更多
In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+...In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.展开更多
In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+...In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.展开更多
An optimal magic cube of order n is a magic cube whose row sums, column sums and oblique sums of 9 n layers are n(n 3+1)/2. The author proved that optimal magic cubes of order n may be constructed as long as n and 2, ...An optimal magic cube of order n is a magic cube whose row sums, column sums and oblique sums of 9 n layers are n(n 3+1)/2. The author proved that optimal magic cubes of order n may be constructed as long as n and 2, 3, 5, 7 are relatively prime, and a formula for making optimal magic cubes by using optimal Latin squares and optimal magic squares was given.展开更多
A sufficient condition is given for the multiparametric Hopf algebras to be Hopf * -algebras. Then a special subclass of the * -algebra related to a Latin square is given. After being completed, its generators are all...A sufficient condition is given for the multiparametric Hopf algebras to be Hopf * -algebras. Then a special subclass of the * -algebra related to a Latin square is given. After being completed, its generators are all of norm one.展开更多
Let N = {0, 1, ···, n-1}. A strongly idempotent self-orthogonal row Latin magic array of order n(SISORLMA(n) for short) based on N is an n × n array M satisfying the following properties:(1)...Let N = {0, 1, ···, n-1}. A strongly idempotent self-orthogonal row Latin magic array of order n(SISORLMA(n) for short) based on N is an n × n array M satisfying the following properties:(1) each row of M is a permutation of N, and at least one column is not a permutation of N;(2) the sums of the n numbers in every row and every column are the same;(3) M is orthogonal to its transpose;(4) the main diagonal and the back diagonal of M are 0, 1, ···, n-1 from left to right. In this paper, it is proved that an SISORLMA(n)exists if and only if n ? {2, 3}. As an application, it is proved that a nonelementary rational diagonally ordered magic square exists if and only if n ? {2, 3}, and a rational diagonally ordered magic square exists if and only if n ≠2.展开更多
An n×n matrix A consisting of nonnegative integers is a general magic square of order n if thesum of elements in each row,column,and main diagonal is the same.A general magic square A of order n iscalled a magic ...An n×n matrix A consisting of nonnegative integers is a general magic square of order n if thesum of elements in each row,column,and main diagonal is the same.A general magic square A of order n iscalled a magic square,denoted by MS(n),if the entries of A are distinct.A magic square A of order n is normalif the entries of A are n^2 consecutive integers.Let A^*d denote the matrix obtained by raising each elementof A to the d-th power.The matrix A is a d-multimagic square,dcnoted by MS(n,d),if A^*e is an MS(n)for 1≤e≤d.In this paper we investigate the existence of normal bimagic squares of order 2u and prove that thereexists a normal bimagic square of order 2u,where u and 6 are coprime and u≥5.展开更多
文摘The constructional methods of pandiagonal snowflake magic squares of orders 4m are established in paper [3]. In this paper, the constructional methods of pandiagonal snowflake magic squares of odd orders n are established with n = 6m+l, 6m+5 and 6m+3, m is an odd positive integer and m is an even positive integer 9|6m + 3. It is seen that the number sets for constructing pandiagonal snowflake magic squares can be extended to the matrices with symmetric partial difference in each direction for orders 6m + 1 , 6m + 5; to the trisection matrices with symmetric partial difference in each direction for order 6m + 3.
文摘In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.
文摘In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.
文摘An optimal magic cube of order n is a magic cube whose row sums, column sums and oblique sums of 9 n layers are n(n 3+1)/2. The author proved that optimal magic cubes of order n may be constructed as long as n and 2, 3, 5, 7 are relatively prime, and a formula for making optimal magic cubes by using optimal Latin squares and optimal magic squares was given.
文摘A sufficient condition is given for the multiparametric Hopf algebras to be Hopf * -algebras. Then a special subclass of the * -algebra related to a Latin square is given. After being completed, its generators are all of norm one.
基金Supported by the National Natural Science Foundation of China(No.11271089)Guangxi Nature Science Foundation(No.2012GXNSFAA053001)+1 种基金Key Foundation of Guangxi Education Department(No.201202ZD012)Guangxi “Ba Gui” Team for Research and Innovation
文摘Let N = {0, 1, ···, n-1}. A strongly idempotent self-orthogonal row Latin magic array of order n(SISORLMA(n) for short) based on N is an n × n array M satisfying the following properties:(1) each row of M is a permutation of N, and at least one column is not a permutation of N;(2) the sums of the n numbers in every row and every column are the same;(3) M is orthogonal to its transpose;(4) the main diagonal and the back diagonal of M are 0, 1, ···, n-1 from left to right. In this paper, it is proved that an SISORLMA(n)exists if and only if n ? {2, 3}. As an application, it is proved that a nonelementary rational diagonally ordered magic square exists if and only if n ? {2, 3}, and a rational diagonally ordered magic square exists if and only if n ≠2.
基金This paper is supported by the National Natural Science Foundation of China(Nos.11871417,11501181)Science Foundation for Youths(Grant No.2014QK05)Ph.D.(Grant No.qd14140)of Henan Normal University.
文摘An n×n matrix A consisting of nonnegative integers is a general magic square of order n if thesum of elements in each row,column,and main diagonal is the same.A general magic square A of order n iscalled a magic square,denoted by MS(n),if the entries of A are distinct.A magic square A of order n is normalif the entries of A are n^2 consecutive integers.Let A^*d denote the matrix obtained by raising each elementof A to the d-th power.The matrix A is a d-multimagic square,dcnoted by MS(n,d),if A^*e is an MS(n)for 1≤e≤d.In this paper we investigate the existence of normal bimagic squares of order 2u and prove that thereexists a normal bimagic square of order 2u,where u and 6 are coprime and u≥5.