Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bo...Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.展开更多
In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby...In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby limiting their performance.This paper aims to review the underlying mechanisms of how irregularly arranged Pinfins influence the thermal characteristics of power modules and introduce collaborative thermal design with DC bus capacitor and motor.Literature considers chip size,placement,coolant flow direction with the goal of reducing thermal resistance of power modules,minimizing chip junction temperature differentials,and optimizing Pinfin layouts.In the first step,algorithms should efficiently generating numerous unique irregular Pinfin layouts to enhance optimization quality.The second step is to efficiently evaluate Pinfin layouts.Simulation accuracy and speed should be ensured to improve computational efficiency.Finally,to improve overall heat dissipation effectiveness,papers establish models for capacitors,motors,to aid collaborative Pinfin optimization.These research outcomes will provide essential support for future developments in high power density motor drive for vehicles.展开更多
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphi...The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.展开更多
At the 11th Forum on China-ASEAN Technology Transfer and Collaborative Innovation(hereinafter referred to as the China-ASEAN Innovation Forum)in July 2023,ASEAN Secretary-General Kao Kim Hourn highlighted the pivotal ...At the 11th Forum on China-ASEAN Technology Transfer and Collaborative Innovation(hereinafter referred to as the China-ASEAN Innovation Forum)in July 2023,ASEAN Secretary-General Kao Kim Hourn highlighted the pivotal role of technology transfer and innovation in driving economic growth.He emphasized that technology transfer can assist China and ASEAN in bypassing traditional developmental stages.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
The main urban area of Chongqing is surrounded by two rivers and set against each other.With its unique waterfront landscape,it has the resource conditions to become a leisure tourism destination.Intending to enhance ...The main urban area of Chongqing is surrounded by two rivers and set against each other.With its unique waterfront landscape,it has the resource conditions to become a leisure tourism destination.Intending to enhance people’s happiness,improve city quality,and promote Chongqing’s main urban area to become a tourist destination,this paper finds out the existing problems in the construction of public outdoor leisure and fitness facilities on the two rivers and four banks of Chongqing’s main urban area through investigation and analysis based on relevant experiences at home and abroad,takes the value chain theory as the guidance,and to find solutions to the problem.On this basis,combined with the law of economic operation,this paper puts forward the guiding ideology,principles,development goals,functional orientation,and development path for the improvement of public outdoor leisure and fitness on two rivers and four banks in the main city of Chongqing,and accordingly puts forward the policy system and guarantee measures for its improvement.展开更多
The article hypothesizes that DE and DM (UCM) are a “Form of Motion of a Special Nature”, where “Form of Motion” means “Eternal Motion” as the power of dynamics of different levels and varying degrees of self-su...The article hypothesizes that DE and DM (UCM) are a “Form of Motion of a Special Nature”, where “Form of Motion” means “Eternal Motion” as the power of dynamics of different levels and varying degrees of self-sufficiency, and by “Special Nature”, gravitational and two other properties of matter, “tied” to the “Eternal Movement” and completely dependent on it. Carriers of key properties of a “Special Nature” have been established: “0”-DE particles and “3”-DM particles (UDM). The unity of their inherent “motionally-gravitational” properties and the peculiarity of the relationship between “motion” and “gravity” are revealed: the higher the intensity of “Eternal Motion”, the stronger the gravitational properties of matter are manifested (and vice versa). The relationship of “time” with the “vibration frequency” and the “mass” of photons with the “degree of bonding and deformation properties of the field” is shown. The maximum level of gravity has been determined, which allows Nature to successfully create the Universe: such a landmark is the proximity to the property of the Primary Source—the “pure graviton” of the OSP space, the most powerful “motionally-gravitational” particle of the Universe. The reasons for the emergence of such an identity of the gravitational properties of particles with the indicators of a “pure graviton” are established: for “0”-DE particles, this is the acquisition of the function of “freedom of movement”;for “3”-DM particles (UDM), the creation of a special structure—a “double field” (“Main” and “Small”). The presence in the “double field” of specific “tools” for the creation of the worlds of the Universe—gravitational “waves” gives rise to impulses (shocks) of varying intensity and shape. A list of functions performed by “waves” in the “Main” and “Small” fields has been compiled. The specific conditions for the formation of “UDM Streams”, their transformation into a “Vortex” and, under the influence of a powerful Initial Impulse (push), sending them to the “place” of the creation of galaxies, are shown. It is suggested that there is a “Cycle of Matter in Nature” in the closed structure of our Universe due to the “work” of “waves” and the functioning of special “factories” in the form of exotic space objects—Black holes.展开更多
The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary s...The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law.展开更多
Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation,but generally suffers from the serious drawbacks on light absorption,charge generation and transport,and str...Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation,but generally suffers from the serious drawbacks on light absorption,charge generation and transport,and structural stability that limit the performance.The core-shell semiconductorgraphene(CSSG)nanoarchitectures may address these issues due to their unique structures with exceptional physical and chemical properties.This review explores recent advances of the CSSG nanoarchitectures in the photocatalytic performance.It starts with the classification of the CSSG nanoarchitectures by the dimensionality.Then,the construction methods under internal and external driving forces were introduced and compared with each other.Afterward,the physicochemical properties and photocatalytic applications of these nanoarchitectures were discussed,with a focus on their role in photocatalysis.It ends with a summary and some perspectives on future development of the CSSG nanoarchitectures toward highly efficient photocatalysts with extensive application.By harnessing the synergistic capabilities of the CSSG architectures,we aim to address pressing environmental and energy challenges and drive scientific progress in these fields.展开更多
Network approaches have been widely accepted to guide surgical strategy and predict outcome for epilepsy treatment.This study starts with a single oscillator to explore brain activity,using a phenomenological model ca...Network approaches have been widely accepted to guide surgical strategy and predict outcome for epilepsy treatment.This study starts with a single oscillator to explore brain activity,using a phenomenological model capable of describing healthy and epileptic states.The ictal number of seizures decreases or remains unchanged with increasing the speed of oscillator excitability and in each seizure,there is an increasing tendency for ictal duration with respect to the speed.The underlying reason is that the strong excitability speed is conducive to reduce transition behaviors between two attractor basins.Moreover,the selection of the optimal removal node is estimated by an indicator proposed in this study.Results show that when the indicator is less than the threshold,removing the driving node is more possible to reduce seizures significantly,while the indicator exceeds the threshold,the epileptic node could be the removal one.Furthermore,the driving node is such a potential target that stimulating it is obviously effective in suppressing seizure-like activity compared to other nodes,and the propensity of seizures can be reduced 60%with the increased stimulus strength.Our results could provide new therapeutic ideas for epilepsy surgery and neuromodulation.展开更多
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te...Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.展开更多
Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.Ho...Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.However,the dynamic of land use and its drivers receive insufficient attention within ecological function areas,particularly in quantifying the dynamic roles of climate change and human activities on land use based on a long time series.This study utilizes geospatial analysis and geographical detectors to examine the temporal dynamics of land use patterns and their underlying drivers in the Hedong Region of the Gansu Province from 1990 to 2020.Results indicated that grassland,cropland,and forestland collectively accounted for approximately 99% of the total land area.Cropland initially increased and then decreased after 2000,while grassland decreased with fluctuations.In contrast,forestland and construction land were continuously expanded,with net growth areas of 6235.2 and 455.9 km^(2),respectively.From 1990 to 2020,cropland was converted to grassland,and both of them were converted to forestland as a whole.The expansion of construction land primarily originated from cropland.From 2000 to 2005,land use experienced intensified temporal dynamics and a shift of relatively active zones from the central to the southeastern region.Grain yield,economic factors,and precipitation were the major factors accounting for most land use changes.Climatic impacts on land use changes were stronger before 1995,succeeded by the impact of animal husbandry during 1995-2000,followed by the impacts of grain production and gross domestic product(GDP)after 2000.Moreover,agricultural and pastoral activities,coupled with climate change,exhibited stronger enhancement effects after 2000 through their interaction with population and economic factors.These patterns closely correlated with ecological restoration projects in China since 1999.This study implies the importance of synergy between human activity and climate change for optimizing land use via ecological patterns in the ecological function area.展开更多
As one of typical areas in the world,northern Chinese Loess Plateau experiences serious wind-water erosion,which leads to widespread land degradation.During the past decades,an ecological engineering was implemented t...As one of typical areas in the world,northern Chinese Loess Plateau experiences serious wind-water erosion,which leads to widespread land degradation.During the past decades,an ecological engineering was implemented to reduce soil erosion and improve soil protection in this area.Thus,it is necessary to recognize the basic characteristics of soil protection for sustainable prevention and wind-water erosion control in the later stage.In this study,national wind erosion survey model and revised universal soil loss equation were used to analyze the spatiotemporal evolution and driving forces of soil protection in the wind-water erosion area of Chinese Loess Plateau during 2000–2020.Results revealed that:(1)during 2000–2020,total amount of soil protection reached up to 15.47×10^(8) t,which was realized mainly through water and soil conservation,accounting for 63.20%of the total;(2)soil protection was improved,with increases in both soil protection amount and soil retention rate.The amounts of wind erosion reduction showed a decrease trend,whereas the retention rate of wind erosion reduction showed an increase trend.Both water erosion reduction amount and retention rate showed increasing trends;and(3)the combined effects of climate change and human activities were responsible for the improvement of soil protection in the wind-water erosion area of Chinese Loess Plateau.The findings revealed the spatiotemporal patterns and driving forces of soil protection,and proposed strategies for future soil protection planning in Chinese Loess Plateau,which might provide valuable references for soil erosion control in other wind-water erosion areas of the world.展开更多
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th...In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.展开更多
Urbanization research is essential for the sustainable use of regional land resources and ecological environment protection.The expansion process and driving factors of urban construction land at different scales in t...Urbanization research is essential for the sustainable use of regional land resources and ecological environment protection.The expansion process and driving factors of urban construction land at different scales in the middle reaches of the Yellow River(MRYR)have not been comprehensively elucidated.In this study,we explored the distribution pattern of urban construction land on different slope gradients at different scales and analyzed its influencing factors.The main findings were as follows:(1)There has been significant expansion of urban construction land in the MRYR over the past 20 years.Spatial heterogeneity was observed in the regional urban construction land expansion process among different geomorphic regions.(2)The urban construction land in the MRYR was expanded vertically to areas with slopes of>5°,particularly in 2005–2010.Significant slope climbing of urban construction land was observed in the loess hilly-gully and rocky mountain areas.(3)In MRYR,68.45%of the counties were categorized as the slope-climbing types,including 37.38%high-slope-climbing types.(4)The regional population density and economic development level were closely associated with regional urban construction land area variability.(5)The climbing process of regional urban construction can effectively alleviate farmland encroachment and pressure on the regional ecological environment.The urban expansion of the metropolitan distribution areas in the Plain region(such as Xi'an,Taiyuan)had a relatively significant impact on the local carbon storage.展开更多
Gross primary productivity (GPP) of vegetation is a critical indicator of ecosystem growth and carbon sequestration. The spatiotemporal variation characteristics of land vegetation GPP trends in a specific region of A...Gross primary productivity (GPP) of vegetation is a critical indicator of ecosystem growth and carbon sequestration. The spatiotemporal variation characteristics of land vegetation GPP trends in a specific region of Asia from 2001 to 2020 were analyzed by Sen and MK trend analysis methods in this study .Moreover , a GPP change attribution model was established to explore the driving influences of factors such as Leaf Area Index (LAI), Land Surface Temperature (LST), Vapor Pressure Deficit (VPD), Soil Moisture, Solar Radiation and Wind Speed on GPP. The results indicate that summer GPP values are significantly higher than those in other months, accounting for 60.8% of the annual total GPP;spring and autumn contribute 18.91% and 13.04%, respectively. In winter, due to vegetation being nearly dormant, the contribution is minimal at 7.19%. Spatially, GPP shows a decreasing trend from southeast to northwest. LAI primarily drives the spatial and seasonal variations of regional GPP, while VPD, surface temperature, solar radiation, and soil moisture have varying impacts on GPP across different dimensions. Additionally, wind speed exhibits a minor contribution to GPP across different dimensions.展开更多
This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio ind...This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio index. Then, based on the DEA meta-frontier theory framework which taking into account the regional and industrial heterogeneity and index decomposition method, the driving factors of decoupling process were explored mainly from the view of technology and efficiency. The results show that during2000-2019, weak decoupling was the primary state. Investment scale expansion was the largest reason hindering decoupling process of industrial increase from ICE. Both energy saving and production technology achieved significant progress, which facilitated the decoupling process. Simultaneously, the energy technology gap and production technology gap among regions have been narrowed, and played a role in promoting decoupling process. On the contrary, both scale economy efficiency and pure technical efficiency have inhibiting effects on decoupling process. The former indicates that the scale economy of China's industry was not conducive to improve energy efficiency and production efficiency, while the latter indicates that resource misallocation problem may exist in both energy market and product market.展开更多
Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive f...Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive formulations when driving metal flyer plates in the denotation wave propagation direction.The research results showed that the formulations with 43 μm aluminum(Al) powder particles(The particle sizes of Al powder were in the range of 2~43 μm) exhibited the optimal performance in driving flyer plates along the denotation wave propagation direction. Compared to the formulations with Al powder 13 μm, the formulations with Al powder 2 μm delivered better performance in accelerating metal flyer plates in the early stage, which, however, turned to be poor in the later stage. The CL-20-based explosives containing 25% Al far under-performed those containing 15% Al. Based on the proposed quasi-isentropic hypothesis, relevant isentropy theories, and the functional relationship between detonation parameters and entropy as well as Al reaction degree, the characteristic lines of aluminized explosives in accelerating flyer plates were theoretically studied, a quasi-isentropic theoretical model for the aluminized explosive driving the flyer plate was built and the calculation methods for the variations of flyer plate velocity, Al reaction degree, and detonation product parameters with time and axial positions were developed. The theoretical model built is verified by the experimental results of the CL-20-based aluminized explosive driving flyer plate. It was found that the model built could accurately calculate the variations of flyer plate velocity and Al reaction degree over time. In addition, how physical parameters including detonation product pressure and temperature varied with time and axial positions was identified. The action time of the positive pressure after the detonation of aluminized explosives was found prolonged and the downtrend of the temperature was slowed down and even reversed to a slight rise due to the aftereffect reaction between the Al powder and the detonation products.展开更多
The Lhasa River Basin forms an essential human settlement area in the southern part of the Qinghai-Tibet Plateau.This study employed ecosystem service value(ESV)evaluation model,terrain gradient grading,and Geodetecto...The Lhasa River Basin forms an essential human settlement area in the southern part of the Qinghai-Tibet Plateau.This study employed ecosystem service value(ESV)evaluation model,terrain gradient grading,and Geodetector to analyze land use and ESV in the Lhasa River Basin from 1985 to 2020.The findings reveal that:(1)From 1985 to 2020,grassland was the dominant land use.There was a trend of grassland reduction and the expansion of other land types.(2)ESV has increased over the research period(with a total increase of 0.84%),with higher values in the southeast and lower values in the northwest.Grassland contributed the most to ESV,and climate regulation and hydrological regulation were the ecosystem services that contribute the most to ESV.(3)Natural factors like NDVI and altitude,as well as economic factors like population density and distance from roads,influenced the spatial differentiation of ESV,the explanatory power of NDVI reached up to 0.47.The interaction between factors had a greater impact than individual factors.These research results can provide theoretical support for national spatial planning and ecological environment protection in the Lhasa River Basin and other similar areas.展开更多
基金Project supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.
基金supported in part by National Key R&D Program of China (2021YFB2500600)in part by Chinese Academy of Sciences Youth multi-discipline project (JCTD-2021-09)in part by Strategic Piority Research Program of Chinese Academy of Sciences (XDA28040100)
文摘In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby limiting their performance.This paper aims to review the underlying mechanisms of how irregularly arranged Pinfins influence the thermal characteristics of power modules and introduce collaborative thermal design with DC bus capacitor and motor.Literature considers chip size,placement,coolant flow direction with the goal of reducing thermal resistance of power modules,minimizing chip junction temperature differentials,and optimizing Pinfin layouts.In the first step,algorithms should efficiently generating numerous unique irregular Pinfin layouts to enhance optimization quality.The second step is to efficiently evaluate Pinfin layouts.Simulation accuracy and speed should be ensured to improve computational efficiency.Finally,to improve overall heat dissipation effectiveness,papers establish models for capacitors,motors,to aid collaborative Pinfin optimization.These research outcomes will provide essential support for future developments in high power density motor drive for vehicles.
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
基金supported in part by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02)Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Changes(PGPEC2304)+1 种基金Yunnan Normal University,China.This study was also sponsored by the Scientific Research Project of Education Department of Hubei Province(Grant No.B2022262)the Philosophy and Social Sciences Research Project of Education Department of Hubei Province(Grant No.22G024).
文摘The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.
文摘At the 11th Forum on China-ASEAN Technology Transfer and Collaborative Innovation(hereinafter referred to as the China-ASEAN Innovation Forum)in July 2023,ASEAN Secretary-General Kao Kim Hourn highlighted the pivotal role of technology transfer and innovation in driving economic growth.He emphasized that technology transfer can assist China and ASEAN in bypassing traditional developmental stages.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金funded by the Humanities and Social Sciences Research Planning Fund of the Ministry of Education of the People’s Republic of China,entitled“Research on the Application and Improvement of PPP Model for the Construction of Sports and Leisure Characteristic Towns Based on Value Chain Theory”(Project No.18XJA890002).
文摘The main urban area of Chongqing is surrounded by two rivers and set against each other.With its unique waterfront landscape,it has the resource conditions to become a leisure tourism destination.Intending to enhance people’s happiness,improve city quality,and promote Chongqing’s main urban area to become a tourist destination,this paper finds out the existing problems in the construction of public outdoor leisure and fitness facilities on the two rivers and four banks of Chongqing’s main urban area through investigation and analysis based on relevant experiences at home and abroad,takes the value chain theory as the guidance,and to find solutions to the problem.On this basis,combined with the law of economic operation,this paper puts forward the guiding ideology,principles,development goals,functional orientation,and development path for the improvement of public outdoor leisure and fitness on two rivers and four banks in the main city of Chongqing,and accordingly puts forward the policy system and guarantee measures for its improvement.
文摘The article hypothesizes that DE and DM (UCM) are a “Form of Motion of a Special Nature”, where “Form of Motion” means “Eternal Motion” as the power of dynamics of different levels and varying degrees of self-sufficiency, and by “Special Nature”, gravitational and two other properties of matter, “tied” to the “Eternal Movement” and completely dependent on it. Carriers of key properties of a “Special Nature” have been established: “0”-DE particles and “3”-DM particles (UDM). The unity of their inherent “motionally-gravitational” properties and the peculiarity of the relationship between “motion” and “gravity” are revealed: the higher the intensity of “Eternal Motion”, the stronger the gravitational properties of matter are manifested (and vice versa). The relationship of “time” with the “vibration frequency” and the “mass” of photons with the “degree of bonding and deformation properties of the field” is shown. The maximum level of gravity has been determined, which allows Nature to successfully create the Universe: such a landmark is the proximity to the property of the Primary Source—the “pure graviton” of the OSP space, the most powerful “motionally-gravitational” particle of the Universe. The reasons for the emergence of such an identity of the gravitational properties of particles with the indicators of a “pure graviton” are established: for “0”-DE particles, this is the acquisition of the function of “freedom of movement”;for “3”-DM particles (UDM), the creation of a special structure—a “double field” (“Main” and “Small”). The presence in the “double field” of specific “tools” for the creation of the worlds of the Universe—gravitational “waves” gives rise to impulses (shocks) of varying intensity and shape. A list of functions performed by “waves” in the “Main” and “Small” fields has been compiled. The specific conditions for the formation of “UDM Streams”, their transformation into a “Vortex” and, under the influence of a powerful Initial Impulse (push), sending them to the “place” of the creation of galaxies, are shown. It is suggested that there is a “Cycle of Matter in Nature” in the closed structure of our Universe due to the “work” of “waves” and the functioning of special “factories” in the form of exotic space objects—Black holes.
基金the National Natural Science Foundation of China(Nos.11988102,92052201,11825204,12032016,12372220,and 12372219)。
文摘The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law.
基金supported by the National Natural Science Foundation of China(61974125)the Open Innovation Fund for undergraduate students of Xiamen University(KFJJ-202411).
文摘Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation,but generally suffers from the serious drawbacks on light absorption,charge generation and transport,and structural stability that limit the performance.The core-shell semiconductorgraphene(CSSG)nanoarchitectures may address these issues due to their unique structures with exceptional physical and chemical properties.This review explores recent advances of the CSSG nanoarchitectures in the photocatalytic performance.It starts with the classification of the CSSG nanoarchitectures by the dimensionality.Then,the construction methods under internal and external driving forces were introduced and compared with each other.Afterward,the physicochemical properties and photocatalytic applications of these nanoarchitectures were discussed,with a focus on their role in photocatalysis.It ends with a summary and some perspectives on future development of the CSSG nanoarchitectures toward highly efficient photocatalysts with extensive application.By harnessing the synergistic capabilities of the CSSG architectures,we aim to address pressing environmental and energy challenges and drive scientific progress in these fields.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12072265,12272295,and 11972288)。
文摘Network approaches have been widely accepted to guide surgical strategy and predict outcome for epilepsy treatment.This study starts with a single oscillator to explore brain activity,using a phenomenological model capable of describing healthy and epileptic states.The ictal number of seizures decreases or remains unchanged with increasing the speed of oscillator excitability and in each seizure,there is an increasing tendency for ictal duration with respect to the speed.The underlying reason is that the strong excitability speed is conducive to reduce transition behaviors between two attractor basins.Moreover,the selection of the optimal removal node is estimated by an indicator proposed in this study.Results show that when the indicator is less than the threshold,removing the driving node is more possible to reduce seizures significantly,while the indicator exceeds the threshold,the epileptic node could be the removal one.Furthermore,the driving node is such a potential target that stimulating it is obviously effective in suppressing seizure-like activity compared to other nodes,and the propensity of seizures can be reduced 60%with the increased stimulus strength.Our results could provide new therapeutic ideas for epilepsy surgery and neuromodulation.
基金Project supported by the Doctoral Fund of Yanshan University (Grant No.B919)the Program of Independent Research for Young Teachers of Yanshan University (Grant No.020000534)the S&T Program of Hebei Province of China (Grant No.QN2016123)。
文摘Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.
基金funded by the National Natural Science Foundation of China(U20A2098,41701219)the National Key Research and Development Program of China(2019YFC0507801)。
文摘Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.However,the dynamic of land use and its drivers receive insufficient attention within ecological function areas,particularly in quantifying the dynamic roles of climate change and human activities on land use based on a long time series.This study utilizes geospatial analysis and geographical detectors to examine the temporal dynamics of land use patterns and their underlying drivers in the Hedong Region of the Gansu Province from 1990 to 2020.Results indicated that grassland,cropland,and forestland collectively accounted for approximately 99% of the total land area.Cropland initially increased and then decreased after 2000,while grassland decreased with fluctuations.In contrast,forestland and construction land were continuously expanded,with net growth areas of 6235.2 and 455.9 km^(2),respectively.From 1990 to 2020,cropland was converted to grassland,and both of them were converted to forestland as a whole.The expansion of construction land primarily originated from cropland.From 2000 to 2005,land use experienced intensified temporal dynamics and a shift of relatively active zones from the central to the southeastern region.Grain yield,economic factors,and precipitation were the major factors accounting for most land use changes.Climatic impacts on land use changes were stronger before 1995,succeeded by the impact of animal husbandry during 1995-2000,followed by the impacts of grain production and gross domestic product(GDP)after 2000.Moreover,agricultural and pastoral activities,coupled with climate change,exhibited stronger enhancement effects after 2000 through their interaction with population and economic factors.These patterns closely correlated with ecological restoration projects in China since 1999.This study implies the importance of synergy between human activity and climate change for optimizing land use via ecological patterns in the ecological function area.
基金funded by the National Key Research and Development Program of China(2023YFF1305304)the National Natural Science Foundation of China(41801007)+3 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0201)the Science Technology Project of Hebei Academy of Sciences(2024PF11)the Basic Research Program of Shanxi Province(202203021211258,202103021223248)the Science and Technology Strategy Project of Shanxi Province(202304031401073).
文摘As one of typical areas in the world,northern Chinese Loess Plateau experiences serious wind-water erosion,which leads to widespread land degradation.During the past decades,an ecological engineering was implemented to reduce soil erosion and improve soil protection in this area.Thus,it is necessary to recognize the basic characteristics of soil protection for sustainable prevention and wind-water erosion control in the later stage.In this study,national wind erosion survey model and revised universal soil loss equation were used to analyze the spatiotemporal evolution and driving forces of soil protection in the wind-water erosion area of Chinese Loess Plateau during 2000–2020.Results revealed that:(1)during 2000–2020,total amount of soil protection reached up to 15.47×10^(8) t,which was realized mainly through water and soil conservation,accounting for 63.20%of the total;(2)soil protection was improved,with increases in both soil protection amount and soil retention rate.The amounts of wind erosion reduction showed a decrease trend,whereas the retention rate of wind erosion reduction showed an increase trend.Both water erosion reduction amount and retention rate showed increasing trends;and(3)the combined effects of climate change and human activities were responsible for the improvement of soil protection in the wind-water erosion area of Chinese Loess Plateau.The findings revealed the spatiotemporal patterns and driving forces of soil protection,and proposed strategies for future soil protection planning in Chinese Loess Plateau,which might provide valuable references for soil erosion control in other wind-water erosion areas of the world.
文摘In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.
基金supported by Fundamental Research Program of Shanxi Province[Grant No.202303021221154]the Project of Shanxi Province Graduate Education and Teaching Reform[2022YJJG48]。
文摘Urbanization research is essential for the sustainable use of regional land resources and ecological environment protection.The expansion process and driving factors of urban construction land at different scales in the middle reaches of the Yellow River(MRYR)have not been comprehensively elucidated.In this study,we explored the distribution pattern of urban construction land on different slope gradients at different scales and analyzed its influencing factors.The main findings were as follows:(1)There has been significant expansion of urban construction land in the MRYR over the past 20 years.Spatial heterogeneity was observed in the regional urban construction land expansion process among different geomorphic regions.(2)The urban construction land in the MRYR was expanded vertically to areas with slopes of>5°,particularly in 2005–2010.Significant slope climbing of urban construction land was observed in the loess hilly-gully and rocky mountain areas.(3)In MRYR,68.45%of the counties were categorized as the slope-climbing types,including 37.38%high-slope-climbing types.(4)The regional population density and economic development level were closely associated with regional urban construction land area variability.(5)The climbing process of regional urban construction can effectively alleviate farmland encroachment and pressure on the regional ecological environment.The urban expansion of the metropolitan distribution areas in the Plain region(such as Xi'an,Taiyuan)had a relatively significant impact on the local carbon storage.
文摘Gross primary productivity (GPP) of vegetation is a critical indicator of ecosystem growth and carbon sequestration. The spatiotemporal variation characteristics of land vegetation GPP trends in a specific region of Asia from 2001 to 2020 were analyzed by Sen and MK trend analysis methods in this study .Moreover , a GPP change attribution model was established to explore the driving influences of factors such as Leaf Area Index (LAI), Land Surface Temperature (LST), Vapor Pressure Deficit (VPD), Soil Moisture, Solar Radiation and Wind Speed on GPP. The results indicate that summer GPP values are significantly higher than those in other months, accounting for 60.8% of the annual total GPP;spring and autumn contribute 18.91% and 13.04%, respectively. In winter, due to vegetation being nearly dormant, the contribution is minimal at 7.19%. Spatially, GPP shows a decreasing trend from southeast to northwest. LAI primarily drives the spatial and seasonal variations of regional GPP, while VPD, surface temperature, solar radiation, and soil moisture have varying impacts on GPP across different dimensions. Additionally, wind speed exhibits a minor contribution to GPP across different dimensions.
基金financial support from the China Postdoctoral Science Foundation project(No.2023M733253)。
文摘This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio index. Then, based on the DEA meta-frontier theory framework which taking into account the regional and industrial heterogeneity and index decomposition method, the driving factors of decoupling process were explored mainly from the view of technology and efficiency. The results show that during2000-2019, weak decoupling was the primary state. Investment scale expansion was the largest reason hindering decoupling process of industrial increase from ICE. Both energy saving and production technology achieved significant progress, which facilitated the decoupling process. Simultaneously, the energy technology gap and production technology gap among regions have been narrowed, and played a role in promoting decoupling process. On the contrary, both scale economy efficiency and pure technical efficiency have inhibiting effects on decoupling process. The former indicates that the scale economy of China's industry was not conducive to improve energy efficiency and production efficiency, while the latter indicates that resource misallocation problem may exist in both energy market and product market.
基金National Natural Science Foundation of China(Grant No.11872120).
文摘Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive formulations when driving metal flyer plates in the denotation wave propagation direction.The research results showed that the formulations with 43 μm aluminum(Al) powder particles(The particle sizes of Al powder were in the range of 2~43 μm) exhibited the optimal performance in driving flyer plates along the denotation wave propagation direction. Compared to the formulations with Al powder 13 μm, the formulations with Al powder 2 μm delivered better performance in accelerating metal flyer plates in the early stage, which, however, turned to be poor in the later stage. The CL-20-based explosives containing 25% Al far under-performed those containing 15% Al. Based on the proposed quasi-isentropic hypothesis, relevant isentropy theories, and the functional relationship between detonation parameters and entropy as well as Al reaction degree, the characteristic lines of aluminized explosives in accelerating flyer plates were theoretically studied, a quasi-isentropic theoretical model for the aluminized explosive driving the flyer plate was built and the calculation methods for the variations of flyer plate velocity, Al reaction degree, and detonation product parameters with time and axial positions were developed. The theoretical model built is verified by the experimental results of the CL-20-based aluminized explosive driving flyer plate. It was found that the model built could accurately calculate the variations of flyer plate velocity and Al reaction degree over time. In addition, how physical parameters including detonation product pressure and temperature varied with time and axial positions was identified. The action time of the positive pressure after the detonation of aluminized explosives was found prolonged and the downtrend of the temperature was slowed down and even reversed to a slight rise due to the aftereffect reaction between the Al powder and the detonation products.
基金supported by the National Natural Science Foundation of China(Grant No.U20A20112)Construction of Talent Innovation Team and Laboratory Platform of Tibet University-Construction of Plateau Geothermal New Energy Innovation Team and Laboratory Platform(Grant No.2022ZDTD10)Central Support for Local Ministry and Regional Joint Construction/First-class Everest Construction Project-Construction of Geological Resources and Geological Engineering Characteristics(Grant No.Tibetan Finance Pre-indication[2022]No.1).
文摘The Lhasa River Basin forms an essential human settlement area in the southern part of the Qinghai-Tibet Plateau.This study employed ecosystem service value(ESV)evaluation model,terrain gradient grading,and Geodetector to analyze land use and ESV in the Lhasa River Basin from 1985 to 2020.The findings reveal that:(1)From 1985 to 2020,grassland was the dominant land use.There was a trend of grassland reduction and the expansion of other land types.(2)ESV has increased over the research period(with a total increase of 0.84%),with higher values in the southeast and lower values in the northwest.Grassland contributed the most to ESV,and climate regulation and hydrological regulation were the ecosystem services that contribute the most to ESV.(3)Natural factors like NDVI and altitude,as well as economic factors like population density and distance from roads,influenced the spatial differentiation of ESV,the explanatory power of NDVI reached up to 0.47.The interaction between factors had a greater impact than individual factors.These research results can provide theoretical support for national spatial planning and ecological environment protection in the Lhasa River Basin and other similar areas.