期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Performance and Application of Double-layered Microcapsule Corrosion Inhibitors
1
作者 余海燕 WANG Yingxiang +2 位作者 WANG Ruizhi HU Lintong WANG Tianlei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期845-853,共9页
Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material co... Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength. 展开更多
关键词 corrosion inhibitors MICROCAPSULE double-layer structure potentiodynamic polarization curve
下载PDF
Full-Sized Pore Structure and Fractal Characteristics of Marine-Continental Transitional Shale: A Case Study in Qinshui Basin, North China 被引量:6
2
作者 YIN Liangliang GUO Shaobin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第3期675-691,共17页
Based on 10 shale samples collected from 4 wells in Qinshui Basin,we investigate the full-sized pore structure and fractal characteristics of Marine-Continental transitional shale by performing organic geochemistry,mi... Based on 10 shale samples collected from 4 wells in Qinshui Basin,we investigate the full-sized pore structure and fractal characteristics of Marine-Continental transitional shale by performing organic geochemistry,mineralogical composition,Nitrogen gas adsorption(N2 adsorption)and Nuclear Magnetic Resonance(NMR)measurements and fractal analysis.Results show that the TOC content of the shale samples is relatively high,with an average value of 2.44wt%,and the thermal evolution is during the mature-over mature stage.The NMR T2 spectrum can be used to characterize the fullsized pore structure characteristics of shale.By combining N2 adsorption pore structure parameters and NMR T2 spectrums,the surface relaxivity of samples are calculated to be between 1.7877 um/s and 5.2272 um/s.On this basis,the T2 spectrums are converted to full-sized pore volume and surface area distribution curves.The statistics show that the pore volume is mainly provided by mesopore,followed by micropore,and the average percentages are 65.04%and 30.83%respectively;the surface area is mainly provided by micropore,followed by mesopore,and the average percentages are 60.8004%and 39.137%respectively;macropore contributes little to pore volume and surface area.The pore structure characteristics of shale have no relationship with TOC,but strong relationships with clay minerals content.NMR fractal dimensions Dmicro and Dmeso have strong positive relationships with the N2 adsorption fractal dimensions D1 and D2 respectively,indicating that Dmicro can be used to characterize the fractal characteristics of pore surface,and Dmeso can be used to characterize the fractal characteristics of pore structure.The shale surface relaxivity is controlled by multiple factors.The increasing of clay mineral content,pore surface area,pore surface fractal dimension and the decreasing of average pore size,will all lead to the decreasing of shale surface relaxivity. 展开更多
关键词 marine-continental transitional SHALE nuclear magnetic resonance nitrogen adsorption full-sized PORE structure FRACTAL dimensions
下载PDF
THE DOUBLE-LAYER STRUCTURE OF THE HADLEY CIRCULATION AND ITS INTERDECADAL EVOLUTION CHARACTERISTICS 被引量:1
3
作者 CHENG Jian-bo HU Shu-juan CHOU Ji-fan 《Journal of Tropical Meteorology》 SCIE 2018年第2期220-231,共12页
Based on the three-pattern decomposition of global atmospheric circulation(TPDGAC), this study investigates the double-layer structure of the Hadley circulation(HC) and its interdecadal evolution characteristics by us... Based on the three-pattern decomposition of global atmospheric circulation(TPDGAC), this study investigates the double-layer structure of the Hadley circulation(HC) and its interdecadal evolution characteristics by using monthly horizontal wind field from NCEP/NCAR reanalysis data from 1948—2011. The following major conclusions are drawn: First, the double-layer structure of the HC is an objective fact, and it constantly exists in April,May, June, October and November in the Southern Hemisphere. Second, the double-layer structure is more obvious in the Southern than in the Northern Hemisphere. Since the double-layer structure is sloped in the vertical direction, it should be taken into consideration when analyzing the variations of the strength and location of the center of the HC.Third, the strength of the double-layer structure of the HC in the Southern Hemisphere consistently exhibits decadal variations with a strong, weak and strong pattern in all five months(April, May, June, October, and November), with cycles of 20-30 a and 40-60 a. Fourth, the center of the HC(mean position of the double-layer structure) in the Southern Hemisphere consistently and remarkably shifts southward in all the five months. The net poleward shifts over the 64 years are 5.18°, 2.11°, 2.50°, 1.79° and 5.76° for the five respective months, with a mean shift of 3.47°. 展开更多
关键词 three-pattern decomposition of global atmospheric circulation Hadley circulation double-layer structure decadal variations
下载PDF
Numerical Analysis of the Structure of High-Strength Double-Layer Steel Plate Concrete Shaft by Drilling Method of Water-Bearing Weak Rock Formation
4
作者 Touogam Touolak Benedicte 《Open Journal of Civil Engineering》 2022年第2期189-207,共19页
In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engin... In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engineers too confused to fully recognize its feasibility of this structure. Hence, based on the previous experimental research on the Taohutu mine construction project in  Ordos in Inner Mongolia, this research paper aims to provide a widely deep numerical analysis by the usage of the finite element software, in fact, to establish the corresponding numerical analysis model and make a comparison with the experimental data to get the rationality of the verified model. The influence of the composite characteristics of the steel plate and concrete on the ultimate bearing capacity and stress field of the shaft wall structure is studied here through the method of multi-factor analysis. Also, the optimal design scheme of the double-layer steel plate and concrete composite shaft wall structure is proposed in this research paper. 展开更多
关键词 Finite Element Method double-layer Steel Plate Shaft Wall structure Taohutu Mine Construction
下载PDF
Preparation and Microwave Absorbing Properties of Double-layer Fine Iron Tailings Cementitious Materials
5
作者 LI Huawei WANG Rong +3 位作者 WANG Yulin LIU Feiyu WANG Qian WEI Muwang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1126-1135,共10页
To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into diffe... To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials. 展开更多
关键词 microwave absorbing properties iron tailings electromagnetic parameters single-layer structure double-layer structure impedance matching
下载PDF
Double-layer microwave absorber of nanocrystalline strontium ferrite and iron microfibers 被引量:1
6
作者 Wei Chun-Yu Shen Xiang-Qian Song Fu-Zhan 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期541-547,共7页
Microwave absorption properties of the nanocrystalline strontium ferrite (SrFe12O19) and iron (α-Fe) microfibers for single-layer and double-layer structures are investigated in a frequency range of 2 GHz 18 GHz.... Microwave absorption properties of the nanocrystalline strontium ferrite (SrFe12O19) and iron (α-Fe) microfibers for single-layer and double-layer structures are investigated in a frequency range of 2 GHz 18 GHz. For the singlelayer absorbers, the nanocrystalline SrFe12O19 microfibers show some microwave absorptions at 6 GHz 18 GHz, with a minimum reflection loss (RL) value of -11.9 dB at 14.1 GHz for a specimen thickness of 3.0 mm, while for the nanocrystalline α-Fe microfibers, their absorptions largely take place at 15 GHz-18 GHz with the RL value exceeding -10 dB, with a minimum .RL value of about -24 dB at 17.5 GHz for a specimen thickness of 0.7 mm. For the doublelayer absorber with an absorbing layer of α-Fe microfibers with a thickness of 0.7 mm and matching layer of SrFe12O19 microfibers with a thickness of 1.3 ram, the minimum RL value is about -63 dB at 16.4 GHz and the absorption band width is about 6.7 GHz ranging from 11.3 GHz to 18 GHz with the RL value exceeding -10 dB which covers the whole Ku-band (12.4 GHz 18 GHz) and 27% of X-band (8.2 GHz 12.4 GHz). 展开更多
关键词 nanocrystalline microfibers microwave absorber double-layer structure
下载PDF
Geochemical and Geological Characterization of Marine-Continental Transitional Shale: A Case Study in the Ordos Basin, NW China
7
作者 WEI Zhifu WANG Gen +4 位作者 WANG Yongli MA Xueyun ZHANG Ting HE Wei YU Xiaoli 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第3期809-821,共13页
The organic-rich shale of the Shanxi and Taiyuan Formation of the Lower Permian deposited in a marinecontinental transitional environment are well developed in the Ordos Basin,NW China,which is considered to contain a... The organic-rich shale of the Shanxi and Taiyuan Formation of the Lower Permian deposited in a marinecontinental transitional environment are well developed in the Ordos Basin,NW China,which is considered to contain a large amount of shale hydrocarbon resources.This study takes the Lower Permian Shanxi and Taiyuan shale collected from well SL~# in the Ordos Basin,NW China as an example to characterize the transitional shale reservoir.Based on organic geochemistry data,X-ray diffraction(XRD)analysis,field-emission scanning electron microscopy(FE-SEM)observations,the desorbed gas contents of this transitional shale were systematically studied and the shale gas potential was investigated.The results indicate that the Lower Permian Shanxi and Taiyuan shale has a relatively high total organic carbon(TOC)(average TOC of 4.9%)and contains type III kerogen with a high mature to over mature status.XRD analyses show that an important characteristic of the shale is that clay and brittle minerals of detrital origin comprise the major mineral composition of the marine-continental transitional shale samples,while the percentages of carbonate minerals,pyrite and siderite are relatively small.FE-SEM observations reveal that the mineral matrix pores are the most abundant in the Lower Permian shale samples,while organic matter(OM)pores are rarely developed.Experimental analysis suggests that the mineral compositions mainly govern the macropore development in the marine-continental transitional shale,and mineral matrix pores and microfractures are considered to provide space for gas storage and migration.In addition,the desorption experiments demonstrated that the marine-continental transitional shale in the Ordos Basin has a significantly potential for shale gas exploration,ranging from 0.53 to 2.86 m^3/t with an average value of 1.25m^3/t,which is in close proximity to those of terrestrial shale(1.29 m^3/t)and marine shale(1.28 m^3/t).In summary,these results demonstrated that the Lower Permian marine-continental transitional shale in the Ordos Basin has a significantly potential for shale gas exploration. 展开更多
关键词 marine-continental transitional shales desorbed gas pore structure FE-SEM Ordos Basin
下载PDF
Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis
8
作者 焦宝臣 张晓丹 +3 位作者 魏长春 孙建 倪牮 赵颖 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期407-415,共9页
Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of ace... Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated. 展开更多
关键词 indium doped zinc oxide thin film ultrasonic spray pyrolysis double-layer structure solar cell
下载PDF
Influence of secondary lining thickness on mechanical behaviours of double-layer lining in large-diameter shield tunnels
9
作者 Shimin Wang Xuhu He +3 位作者 Xiaoyu Peng Ya Wang Zhengxin Li Zihan 《Underground Space》 SCIE EI CSCD 2024年第5期130-150,共21页
In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in t... In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in the design of a double lining structure,which is worth being explored.Based on an actual large-diameter shield tunnel,loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure.The test results show that within the range of secondary lining thicknesses discussed,the load-bearing limit of the double-layer lining increases with growing secondary lining thickness.As a passive support,the secondary lining acts as an auxiliary load-bearing structure by contacting the segment.And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining,with both the contact pressure level and the contact area between the two varying.For double-layer lining structures in large-diameter shield tunnels,it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment,as this allows them to have a coordinated deformation and a good joint load-bearing effect. 展开更多
关键词 Large-diameter shield tunnels double-layer lining structure Secondary lining thickness Stiffness matching Similar model test
原文传递
Ultrahigh-power electrochemical double-layer capacitors based on structurally integrated 3D carbon tube arrays 被引量:1
10
作者 Fangming Han Guowen Meng +5 位作者 Dou Lin Gan Chen Shiping Zhang Ou Qian Xiaoguang Zhu Bingqing Wei 《Nano Research》 SCIE EI CSCD 2023年第11期12849-12854,共6页
The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tu... The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tube(CT)grids(3D-CTGs)using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors(EDLCs),showing excellent frequency response performance.The unique design warrants fast ion migration channels,excellent electronic conductivity,and good structural stability.This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes,resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes,respectively.Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output.The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahighpower performance and open up new possibilities for applications requiring high-power output. 展开更多
关键词 ultrahigh-power double-layer capacitor structurally integrated three-dimensional(3D)carbon tube smooth ion migration channels
原文传递
Preparation and properties of T-ZnO_(w) enhanced BCP scaffolds with double-layer structure by digital light processing 被引量:2
11
作者 Ming-Zhu PAN Shuai-Bin HUA +4 位作者 Jia-Min WU Xi YUAN Ze-Lin DENG Jun XIAO Yu-Sheng SHI 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第4期570-581,共12页
Bone scaffolds require both good bioactivity and mechanical properties to keep shape and promote bone repair.In this work,T-ZnO_(w) enhanced biphasic calcium phosphate(BCP)scaffolds with triply periodic minimal surfac... Bone scaffolds require both good bioactivity and mechanical properties to keep shape and promote bone repair.In this work,T-ZnO_(w) enhanced biphasic calcium phosphate(BCP)scaffolds with triply periodic minimal surface(TPMS)-based double-layer porous structure were fabricated by digital light processing(DLP)with high precision.Property of suspension was first discussed to obtain better printing quality.After sintering,T-ZnO_(w) reacts with b-tricalcium phosphate(β-TCP)to form Ca_(19)Zn_(2)(PO_(4))14,and inhibits the phase transition toα-TCP.With the content of T-ZnO_(w) increasing from 0 to 2 wt%,the flexural strength increases from 40.9 to 68.5 MPa because the four-needle whiskers can disperse stress,and have the effect of pulling out as well as fracture toughening.However,excessive whiskers will reduce the cure depth,and cause more printing defects,thus reducing the mechanical strength.Besides,T-ZnO_(w) accelerates the deposition of apatite,and the sample with 2 wt%T-ZnO_(w) shows the fastest mineralization rate.The good biocompatibility has been proved by cell proliferation test.Results confirmed that doping T-ZnO_(w) can improve the mechanical strength of BCP scaffolds,and keep good biological property,which provides a new strategy for better bone repair. 展开更多
关键词 biphasic calcium phosphate(BCP) T-ZnO_(w) digital light processing(DLP) double-layer structure cure property mechanical strength
原文传递
Simplified Method of Simulating Double-Layer Micro-Perforated Panel Structure
12
作者 Wan Chen Chihua Lu +1 位作者 Zhien Liu Songze Du 《Automotive Innovation》 EI 2018年第4期374-380,共7页
The micro-perforated panel(MPP)structure has been widely used in various noise control applications,and thus its acoustic performance prediction has been receiving increasing attention.The acoustic performance of simp... The micro-perforated panel(MPP)structure has been widely used in various noise control applications,and thus its acoustic performance prediction has been receiving increasing attention.The acoustic performance of simple MPP structures,such as a MPPsound absorber,has been predicted using an analytical calculation method.However,this is not a suitable approach toward predicting the acoustic performance of complicated MPP structures,owing to the structural complexity of these structures.Moreover,the many perforations of submillimeter scale diameter render the MPP structures very difficult to analyze using numerical simulation.Thus,this study focused on two different simplified MPP simulation methods:the transfer admittance method and the equivalent fluid method,and their application on double-layer MPP structures.Based on the two simplified MPP simulation methods,the transmission loss value of the double-layer MPP mufflers with two sets of different structural parameters was calculated,respectively.The predicted results were compared with the impedance tube measurements.The results revealed that the two simplified MPP simulation methods could effectively predict the acoustic performance of doublelayer MPP structures.Moreover,the prediction based on the transfer admittance method can outperform the two simplified simulation methods. 展开更多
关键词 double-layer MPP structure Acoustic simulation Transfer admittance Porous material Experimental test
原文传递
Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties 被引量:4
13
作者 Bing Zhou Jianzhou Song +3 位作者 Bo Wang Yuezhan Feng Chuntai Liu Changyu Shen 《Nano Research》 SCIE EI CSCD 2022年第10期9520-9530,共11页
The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties,however with inevitable sacrifice of their electrical conductivity and electroma... The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties,however with inevitable sacrifice of their electrical conductivity and electromagnetic interference(EMI)shielding performance.This study demonstrates a facile yet efficient layering structure design to prepare the highly robust and conductive double-layer Janus films comprised of independent aramid nanofiber(ANF)and Ti3C2Tx MXene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)layers.The ANF layer serves to provide good mechanical stability,whilst the MXene/PEDOT:PSS layer ensures excellent electrical conductivity.Doping PEDOT:PSS into the MXene layer enhances the interfacial bonding strength between the MXene and ANF layers and improves the hydrophobicity and water/oxidation resistance of MXene layer.The resultant ANF/MXene-PEDOT:PSS Janus film with a conductive layer thickness of 4.4μm was shown to display low sheet resistance(2.18Ω/sq),good EMI shielding effectiveness(EMI SE of 48.1 dB),high mechanical strength(155.9 MPa),and overall toughness(19.4 MJ/m^(3)).Moreover,the excellent electrical conductivity and light absorption capacity of the MXene-PEDOT:PSS conductive layer mean that these Janus films display multi-source driven heating functions,producing excellent Joule heating(382℃ at 4 V)and photothermal conversion(59.6℃ at 100 mW/m^(2))properties. 展开更多
关键词 MXene double-layer structure mechanical properties electromagnetic interference(EMI)shielding electro-/photothermal conversion
原文传递
Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations 被引量:3
14
作者 Zheng Bo Changwen Li +3 位作者 Huachao Yang Kostya Ostrikov Jianhua Yan Kefa Cen 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期162-184,共23页
Electric double-layer capacitors(EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode–electrolyte i... Electric double-layer capacitors(EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode–electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics(MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography,can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway.Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties(e.g., the affinity between the electrode and the ions) can affect the ionpacking phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties. 展开更多
关键词 Electric double-layer capacitors Molecular dynamics Porous structure NANOstructure
下载PDF
Annealing of Oriented PP/PE Double-layer Film within the Melting Range of PE:the Role of Partial Melting and Self-nucleation 被引量:3
15
作者 Jia-Yi Xie Yong-Shi Wu +3 位作者 Ze-Feng Yin Liang-Dong Yin Rui-Jie Xu Cai-Hong Lei 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第4期403-412,共10页
Due to the mechanical stability of the PP layer,the oriented PP/PE double-layer film with a row-nucleated crystalline structure can be annealed at a higher temperature than the PE monolayer film.In this work,the effec... Due to the mechanical stability of the PP layer,the oriented PP/PE double-layer film with a row-nucleated crystalline structure can be annealed at a higher temperature than the PE monolayer film.In this work,the effects of annealing temperature within the melting range of PE on the crystalline structure and properties of PP/PE double-layer films were studied.When the annealing temperature is between 100 and 130℃,below the melting point of PE,the crystallinity,the long period,lateral dimension and orientation of the lamellae in the PE layer increase with the annealing temperature due to the melting of thin lamellae and the self-nucleated effect of partially-melted melts during annealing.With the annealing temperature further increasing to 138℃,near the melting ending point of PE,since the lamellae melt completely and the melt memory becomes weak during annealing,some spherulite structures are formed in the annealed sample,resulting in a decrease of orientation.In contrast,the annealing only causes the appearance of a low-temperature endothermic plateau in the PP layer.The improved size and orientation of lamellar structure in the PE layer increase the pore arrangement and porosity of the stretched PP/PE microporous membrane.This study successfully applies the self-nucleation effect of partially-melted polymer melt into the practical annealing process,which is helpful to guide the production of high-performance PP/PE/PP lithium batteries separator and the annealing process of other multilayer products. 展开更多
关键词 Annealing temperature Crystalline structure Oriented PP/PE double-layer films
原文传递
Integrating coaxial electrospinning and 3D printing technologies for the development of biphasic porous scaffolds enabling spatiotemporal control in tumor ablation and osteochondral regeneration
16
作者 Wenbao He Chunlin Li +7 位作者 Shitong Zhao Zhendong Li Jing Wu Junjun Li Haichao Zhou Yunfeng Yang Yong Xu Huitang Xia 《Bioactive Materials》 SCIE CSCD 2024年第4期338-353,共16页
The osteochondral defects(OCDs)resulting from the treatment of giant cell tumors of bone(GCTB)often present two challenges for clinicians:tumor residue leading to local recurrence and non-healing of OCDs.Therefore,thi... The osteochondral defects(OCDs)resulting from the treatment of giant cell tumors of bone(GCTB)often present two challenges for clinicians:tumor residue leading to local recurrence and non-healing of OCDs.Therefore,this study focuses on developing a double-layer PGPC-PGPH scaffold using shell-core structure nanofibers to achieve“spatiotemporal control”for treating OCDs caused by GCTB.It addresses two key challenges:eliminating tumor residue after local excision and stimulating osteochondral regeneration in non-healing OCD cases.With a shell layer of protoporphyrin IX(PpIX)/gelatin(GT)and inner cores containing chondroitin sulfate(CS)/poly(lactic-co-glycolic acid)(PLGA)or hydroxyapatite(HA)/PLGA,coaxial electrospinning technology was used to create shell-core structured PpIX/GT-CS/PLGA and PpIX/GT-HA/PLGA nanofibers.These nanofibers were shattered into nano-scaled short fibers,and then combined with polyethylene oxide and hyaluronan to formulate distinct 3D printing inks.The upper layer consists of PpIX/GT-CS/PLGA ink,and the lower layer is made from PpIX/GT-HA/PLGA ink,allowing for the creation of a double-layer PGPC-PGPH scaffold using 3D printing technique.After GCTB lesion removal,the PGPC-PGPH scaffold is surgically implanted into the OCDs.The sonosensitizer PpIX in the shell layer undergoes sonodynamic therapy to selectively damage GCTB tissue,effectively eradicating residual tumors.Subsequently,the thermal effect of sonodynamic therapy accelerates the shell degradation and release of CS and HA within the core layer,promoting stem cell differentiation into cartilage and bone tissues at the OCD site in the correct anatomical position.This innovative scaffold provides temporal control for anti-tumor treatment followed by tissue repair and spatial control for precise osteochondral regeneration. 展开更多
关键词 Spatiotemporal control Giant cell tumors of bone Shell-core structure double-layered scaffold Osteochondral regeneration
原文传递
A Kresling origami metamaterial with reprogrammable shock stiffness
17
作者 Ruiwei Liu Yantong Huang +3 位作者 Manjia Su Chenxiao Li Beibin Liang Chunlong Wang 《Theoretical & Applied Mechanics Letters》 CAS 2024年第4期314-320,共7页
Using origami folding concepts to design novel mechanical metamaterials has recently become a prevalent framework.Inspired by the Kresling origami structure,this study proposes a double-layer Kresling origami metamate... Using origami folding concepts to design novel mechanical metamaterials has recently become a prevalent framework.Inspired by the Kresling origami structure,this study proposes a double-layer Kresling origami metamaterial with reprogrammable shock stiffness.Two combination strategies are constructed,each with different geometric constraints and kinematic compatibility.They are identified as assigned with same torsion direction(ASTD)and assigned with opposite torsion direction(AOTD),respectively.The shock stiffness of two double-layer Kresling origami metamaterials is analyzed using the finite element method,and results indicate that the AOTD metamaterial has superior impact resistance.Furthermore,the programmability of shock stiffness of the metamaterial is carried out comprehensively,and the influence of each design parameter is exhibited in detail.Finally,two prototypes of ASTD and AOTD metamaterials are fabricated,and experimental tests verify the analysis outcomes.This study provides a new approach to constructing mechanical metamaterials with reprogrammable shock stiffness for applications in energy absorption and vibration isolation engineering. 展开更多
关键词 Kresling origami double-layer Kresling structure Shock stiffness Impact resistance Metamaterial
下载PDF
In-situ constructed polymer/alloy composite with high ionic conductivity as an artificial solid electrolyte interphase to stabilize lithium metal anode 被引量:1
18
作者 Ai-Long Chen Yushan Qian +6 位作者 Shujun Zheng Yuyang Chen Yue Ouyang Lulu Mo Zheng-Long Xu Yue-E Miao Tianxi Liu 《Nano Research》 SCIE EI CSCD 2023年第3期3888-3894,共7页
Lithium(Li)metal is regarded as the best anode material for lithium metal batteries(LMBs)due to its high theoretical specific capacity and low redox potential.However,the notorious dendrites growth and extreme instabi... Lithium(Li)metal is regarded as the best anode material for lithium metal batteries(LMBs)due to its high theoretical specific capacity and low redox potential.However,the notorious dendrites growth and extreme instability of the solid electrolyte interphase(SEI)layers have severely retarded the commercialization process of LMBs.Herein,a double-layered polymer/alloy composite artificial SEI composed of a robust poly(1,3-dioxolane)(PDOL)protective layer,Sn and LiCl nanoparticles,denoted as PDOL@Sn-LiCl,is fabricated by the combination of in-situ substitution and polymerization processes on the surface of Li metal anode.The lithiophilic Sn-LiCl multiphase can supply plenty of Li-ion transport channels,contributing to the homogeneous nucleation and dense accumulation of Li metal.The mechanically tough PDOL layer can maintain the stability and compact structure of the inorganic layer in the long-term cycling,and suppress the volume fluctuation and dendrites formation of the Li metal anode.As a result,the symmetrical cell under the double-layered artificial SEI protection shows excellent cycling stability of 300 h at 5.0 mA·cm^(−2)for 1 mAh·cm^(−2).Notably,the Li||LiFePO_(4)full cell also exhibits enhanced capacity retention of 150.1 mAh·g^(−1)after 600 cycles at 1.0 C.Additionally,the protected Li foil can effectively resist the air and water corrosion,signifying the safe operation of Li metal in practical applications.This present finding proposed a different tactic to achieve safe and dendrite-free Li metal anodes with excellent cycling stability. 展开更多
关键词 polymer/alloy composite in-situ polymerization artificial solid electrolyte interphase(SEI) double-layered structure lithium metal battery.
原文传递
Controllable formation of periodic wrinkles in Marangoni-driven self-assembled graphene film for sensitive strain detection 被引量:3
19
作者 Yufei Jia Wenjun Chen +9 位作者 Chen Ye Rongliang Yang Leilei Yang Zian Zhang Qingmei Hu Binghao Liang Bo-Ru Yang Zikang Tang Cheng-Te Lin Xuchun Gui 《Science China Materials》 SCIE EI CSCD 2020年第10期1983-1992,共10页
Controllable formation of microstructures in the assembled graphene film could tune the physical properties and broaden its applications in flexible electronics.Many efforts have been made to control the formation of ... Controllable formation of microstructures in the assembled graphene film could tune the physical properties and broaden its applications in flexible electronics.Many efforts have been made to control the formation of wrinkles and ripples in graphene films.However,the formation of orderly wrinkles in graphene film remains a challenge.Here,we reported a simple strategy for the fabrication of graphene film with periodic and parallel wrinkles with a pre-stretched polydimethylsiloxane substrate.The width of the wrinkles in graphene can be controlled by changing the pre-stretched strain of the substrate.The average width of wrinkles in graphene film on the substrate with pre-stretched strain of 10%,20%,and 50%was about 3.68,2.99 and 2.01µm,respectively.The morphological evolution of wrinkled double-layered graphene under mechanical deformation was observed and studied.Furthermore,a strain sensor was constructed based on the wrinkled graphene,showing high sensitivity,large working range and excellent cyclic stability.These strain sensors show great potential in real-time motion detection,health surveillance and electronic skins. 展开更多
关键词 wrinkled double-layered structure solution-processed assembled graphene film Marangoni effect strain sensor
原文传递
Corrosion of Nickel-based Alloy G30 in the Stratum Water Containing H2S/CO2 被引量:2
20
作者 CHANG Yanrong LU Mei WANG Shangwei TANG Fan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2014年第3期500-508,共9页
The influences of temperature and CO2 pressure on the corrosion of nickel-based alloy G30 in the stratum water containing H2S/CO2 were investigated with the aid Mott-Schottky analysis and scanning electron microscopy... The influences of temperature and CO2 pressure on the corrosion of nickel-based alloy G30 in the stratum water containing H2S/CO2 were investigated with the aid Mott-Schottky analysis and scanning electron microscopy(SEM) of electrochemical impedance spectroscopy(EIS), The results indicate that alloy G30 is in the passive state in the stratum water, which is related to the formation of the passive film on its surface. This passive film can significantly protect the substrate from further corrosion. And the film protection is enhanced with decreasing temperature and CO2 pressure. Auger electron spectrometry(AES) and X-ray photoelectron spectrometry(XPS) results reveal that the passive film shows the double-layer structure, i.e. the inner chromium oxide and the outer iron/nickel spinel oxides or hydroxides with Mo oxides dispersing throughout the inner and outer scale. 展开更多
关键词 Nickel-based alloy Stratum water CORROSION Passive film double-layer structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部