Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Fle...Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Flexible Global OceanAtmosphere-Land System (FGOALS) model,Grid-point Version 2 (g2) and Spectral Version 2 (s2),were validated against observational data.The results revealed that the spatial pattern of SD and SCF over the Northern Hemisphere (NH) are simulated well by both models,except over the Tibetan Plateau,with the average spatial correlation coefficient over all months being around 0.7 and 0.8 for SD and SCF,respectively.Although the onset of snow accumulation is captured wellby the two models in terms of the annual cycle of SD and SCF,g2 overestimates SD/SCF over most mid-and high-latitude areas of the NH.Analysis showed that g2 produces lower temperatures than s2 because it considers the indirect effects of aerosols in its atmospheric component,which is the primary driver for the SD/SCF difference between the two models.In addition,both models simulate the significant decreasing trend of SCF well over (30°-70°N) in winter during the period 1971-94.However,as g2 has a weak response to an increase in the concentration of CO2 and lower climate sensitivity,it presents weaker interannual variation compared to s2.展开更多
Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western ...Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western Jilin,China due to natural condi-tions and sparse observation.Hence,this study investigated the spatiotemporal patterns of snow cover using fine-resolution passive mi-crowave(PMW)snow depth(SD)data from 1987 to 2018,and revealed the potential influence of climate factors on SD variations.The results indicated that the interannual range of SD was between 2.90 cm and 9.60 cm during the snowy winter seasons and the annual mean SD showed a slightly increasing trend(P>0.05)at a rate of 0.009 cm/yr.In snowmelt periods,the snow cover contributed to an increase in volumetric soil water,and the change in SD was significantly affected by air temperature.The correlation between SD and air temperature was negative,while the correlation between SD and precipitation was positive during December and March.In March,the correlation coefficient exceeded 0.5 in Zhenlai,Da’an,Qianan,and Qianguo counties.However,the SD and precipitation were neg-atively correlated over western Jilin in October,and several subregions presented a negative correlation between SD and precipitation in November and April.展开更多
By using the observational snow data of more than 700 weather stations,the interannual temporal and spatial characteristics of seasonal snow cover in China were analyzed.The results show that northern Xinjiang,northea...By using the observational snow data of more than 700 weather stations,the interannual temporal and spatial characteristics of seasonal snow cover in China were analyzed.The results show that northern Xinjiang,northeastern China–Inner Mongolia,and the southwestern and southern portions of Tibetan Plateau are three regions in China with high seasonal snow cover and also an interannual anomaly of snow cover.According to the trend of both the snow depth and snow cover days,there are three changing patterns for the seasonal snow cover:The first type is that both snow depth and snow cover days simultaneously increase or decrease;this includes northern Xinjiang,middle and eastern Inner Mongolia,and so on.The second is that snow depth increases but snow cover days decrease;this type mainly locates in the eastern parts of the northeastern plain of China and the upper reaches of the Yangtze River.The last type is that snow depth decreases but snow cover days increase at the same time such as that in middle parts of Tibetan Plateau.Snow cover in China appears to have been having a slow increasing trend during the last 40 years.On the decadal scale,snow depth and snow cover days slightly increased in the 1960s and then decreased in the 1970s;they again turn to increasing in the 1980s and persist into 1990s.展开更多
Using observed snow cover dam from Chinese meteorological stations, this study indicated that annual mean snow depth, Snow Water Equivalent (SWE), and snow density during 1957-2009 were 0.49 cm, 0.7 ram, and 0.14 g/...Using observed snow cover dam from Chinese meteorological stations, this study indicated that annual mean snow depth, Snow Water Equivalent (SWE), and snow density during 1957-2009 were 0.49 cm, 0.7 ram, and 0.14 g/cm3 over China as a whole, re- spectively. On average, they were all the smallest in the Qinghai-Tibetan Plateau (QTP), and were greater in northwestern China (NW). Spatially, the regions with greater annual mean snow depth and SWE were located in northeastern China including eastern Inner Mongolia (NE), northern Xinjiang municipality, and a small fraction of southwestern QTP. Annual mean snow density was below 0.14 g/cm3 in most of China, and was higher in the QTP, NE, and NW. The trend analyses revealed that both annual mean snow depth and SWE presented increasing trends in NE, NW, the QTP, and China as a whole during 1957-2009. Although the trend in China as a whole was not significant, the amplitude of variation became increasingly greater in the second half of the 20th century. Spatially, the statistically significant (95%-level) positive trends for annual mean snow depth were located in western and northem NE, northwestem Xinjiang municipality, and northeastem QTP. The distribution of positive and negative trends for annu- al mean SWE were similar to that of snow depth in position, but not in range. The range with positive trends of SWE was not as large as that of snow depth, but the range with negative trends was larger.展开更多
In order to analyze the differences between the two snow cover data, the snow cover data of 884 meteorological stations in China from 1951 to 2005 are counted. The data include days of visual snow observation, snow de...In order to analyze the differences between the two snow cover data, the snow cover data of 884 meteorological stations in China from 1951 to 2005 are counted. The data include days of visual snow observation, snow depth, and snow cover durations, which vary according to different definitions of snow cover days. Two series of data, as defined by "snow depth" and by "weather obser- vation," are investigated here. Our results show that there is no apparent difference between them in east China and the Xinjiang region, but in northeast China and the Tibetan Plateau the "weather observation" data vary by more than 10 days and the "snow depth" data vary by 0.4 cm. Especially in the Tibetan Plateau, there are at least 15 more days of"weather observation" snow in most areas (sometimes more than 30 days). There is an obvious difference in the snow cover data due to bimodal snowfall data in the Tibetan Plateau, which has peak snowfalls from September to October and from .April to May. At those times the temperature is too high for snow cover fol:mation mad only a few days have trace snow cover. Also, the characteristics and changing trends of snow cover are analyzed here based on the snow cover data of nine weather stations iri the northeast region of the Tibetan Plateau, by the Mann-KendaU test. The results show significantly fewer days of snow cover and shorter snow dtwations as defined by "snow depth" compared to that as defined by "weather observation." Mann-Kendall tests of both series of snow cover durations show an abrupt change in 1987.展开更多
About one third of the water needed for agriculture in the world is generated by melting snow. Snow cover, surface and ground water recharge are considered as sustainable and renewable resources. It is therefore neces...About one third of the water needed for agriculture in the world is generated by melting snow. Snow cover, surface and ground water recharge are considered as sustainable and renewable resources. It is therefore necessary to identify and study these criteria. The aim of this study is to determine the spatial and temporal distribution of snow cover in the district of the Sheshpir basin in Fars province (in south of Iran). Ground-based observation of snow covers, especially in mountainous areas, is associated with many problems due to the insufficient accuracy of optical observation, as opposed to digital observation. Therefore, GIS and remote sensing technology can be partially effective in solving this problem. Images of Landsat 5<sup>TM</sup> and Landsat 7<sup>TM</sup> satellites were used to derive snow cover maps. The images in ENVI 4.8 software were classified by using the maximum likelihood algorithm. Other spatial analyses were performed in ARC-GIS 9.3 software. The maximum likelihood method was accuracy assessed by operation points of testing. The least and the average of overall accuracy of produced maps were found to be 91% and 98%, respectively. This demonstrates that the maximum likelihood method has high performance in the classification of images. Overall snow cover and the review of terrain through the years 2008-2009 and 2009-2010 showed that snow cover begins to accumulate in November and reaches its highest magnitude in February. Finally, no trace of snow can be observed on the surface of the basin in the month of May. By average, 34% of the basin is covered in snow from November through to May.展开更多
A precise prediction of maximum scour depth around bridge foundations under ice covered condition is crucial for their safe design because underestimation may result in bridge failure and over-estimation will lead to ...A precise prediction of maximum scour depth around bridge foundations under ice covered condition is crucial for their safe design because underestimation may result in bridge failure and over-estimation will lead to unnecessary construction costs. Compared to pier scour depth predictions within an open channel, few studies have attempted to predict the extent of pier scour depth under ice-covered condition. The present work examines scour under ice by using a series of clear-water flume experiments employing two adjacent circular bridge piers in a uniform bed were exposed to open channel and both rough and smooth ice covered channels. The measured scour depths were compared to three commonly used bridge scour equations including Gao’s simplified equation, the HEC-18/Jones equation, and the Froehlich Design Equation. The present study has several advantages as it adds to the understanding of the physics of bridge pier scour under ice cover flow condition, it checks the validity and reliability of commonly used bridge pier equations, and it reveals whether they are valid for the case of scour under ice-covered flow conditions. In addition, it explains how accurately an equation developed for scour under open channel flow can predict scour around bridge piers under ice-covered flow condition.展开更多
There exists great uncertainty in parameterizing snow cover fraction in most general circulation models (GCMs) using various empirical formulae, which has great influence on the performance of GCMs. This work reviews ...There exists great uncertainty in parameterizing snow cover fraction in most general circulation models (GCMs) using various empirical formulae, which has great influence on the performance of GCMs. This work reviews the commonly used relationships between region-averaged snow depth (or snow water equivalent) and snow cover extent (or fraction) and suggests a new empirical formula to compute snow cover fraction, which only depends on the domain-averaged snow depth, for GCMs with different horizontal resolution. The new empirical formula is deduced based on the 10-yr (1978-1987) 0.5°× 0.5° weekly snow depth data of the scanning multichannel microwave radiometer (SMMR) driven from the Nimbus-7 Satellite. Its validation to estimate snow cover for various GCM resolutions was tested using the climatology of NOAA satellite-observed snow cover.展开更多
The spring flood of 2009 in the Red River Valley was exacerbated with severe ice breakup and ice jamming. To assist ice jam mitigation by cutting and breaking up the river ice cover before the flood season and to supp...The spring flood of 2009 in the Red River Valley was exacerbated with severe ice breakup and ice jamming. To assist ice jam mitigation by cutting and breaking up the river ice cover before the flood season and to support the operation of the Red River Floodway, Manitoba Water Stewardship is striving to model the occurrence of ice breakup and simulate the behaviour of ice jamming along the river. An important parameter in ice breakup forecasting is the ice thickness. RADARSAT-2 standard satellite images were collected along the course of the Red River in Manitoba during the 2009-2010 winter to help determine ice thicknesses along the river. Standard images can have transmit-receive polarizations in the horizontal-horizontal (HH) or horizontal-vertical (HV) configurations. Ice thickness measurements were taken in the field during the same time frame when the satellite passed over the Red River Valley. Good correlations were obtained between the HH-backscatter readings and the surveyed ice thicknesses. HV-backscatter readings correlate better with fresh snow depth measurements. Additionally, using same sensor incident angle and flight geometry allows ice thickening rate behavior over the course of the winter to be determined.展开更多
Snow cover plays an important role in the hydrological cycle and water management in Kazakhstan. However, traditional observations do not meet current needs. In this study, a snow depth retrieval equation was develope...Snow cover plays an important role in the hydrological cycle and water management in Kazakhstan. However, traditional observations do not meet current needs. In this study, a snow depth retrieval equation was developed based on passive microwave remote sensing data. The average snow depth in winter (ASDW), snow cover duration (SCD), monthly maximum snow depth (MMSD), and annual average snow depth (AASD) were derived for each year to monitor the spatial and temporal snow distributions. The SCD exhibited significant spatial variations from 30 to 250 days. The longest SCD was found in the mountainous area in eastern Kazakhstan, reaching values between 200 and 250 days in 2005. The AASD increased from the south to the north and maintained latitudinal zonality. The MMSD in most areas ranged from 20 to 30 cm. The ASDW values ranged regularity of latitudinal zonality from 15 to 20 cm in the eastern region and were characterized by spatial The ASDW in the mountainous area often exceeded 20 cm.展开更多
This paper proposes an applicable approach for snow information abstraction in northern Xinjiang Basin using MODIS data. Linear spectral mixture analysis (LSMA) was used to calculate snow cover fractions (SF) with...This paper proposes an applicable approach for snow information abstraction in northern Xinjiang Basin using MODIS data. Linear spectral mixture analysis (LSMA) was used to calculate snow cover fractions (SF) within a pixel, which was used to establish a regression function with NDSI. In addition, 80 snow depths samples were collected in the study region. The correlation between image spectra reflectance and snow depth as well as the comparison between measured snow spectra and image spectra was analyzed. An algorithm was developed for snow depth inversion on the basis of the correlation between snow depth and snow spectra in the region. The results indicated that the model of SF had a high accuracy with the mean absolute error 0.06 tested by 26 true measured values and the validation for snow depth model using another dataset with 50 sampling sites showed an RMSE of 1.63. Our study showed that MODIS data provide an alternative method for snow information abstraction through development of algorithms suitable for local application.展开更多
By using a reverse computation method and the NCEP/NCAR daily reanalysis data from 1960 to 2004, the atmospheric heat source (AHS) was calculated and analyzed. The results show that AHS over the Tibetan Plateau (TP...By using a reverse computation method and the NCEP/NCAR daily reanalysis data from 1960 to 2004, the atmospheric heat source (AHS) was calculated and analyzed. The results show that AHS over the Tibetan Plateau (TP) and its neighboring areas takes on a persistent downtrend in spring and summer during the foregone 50 years, especially the latest 20 years. Snow depth at 50 stations over the TP in winter and spring presents an increase, especially the spring snow depth exhibits a sharp increase in the late 1970s. A close negative correlation exists between snow cover and AHS over the TP and its neighboring areas, as revealed by an SVD analysis, namely if there is more snow over the TP in winter and spring, then the weaker AHS would appear over the TP in spring and summer. The SVD analysis between AHS over the TP in spring and summer and rainfall at 160 stations indicates that the former has a negative correlation with summer precipitation in the middle and lower reaches of the Yangtze River, and a positive correlation with that in South China and North China. The SVD analysis of both snow cover over the TP in winter and spring and rainfall at the same 160 stations indicates that the former has a marked positive correlation with precipitation in the middle and lower reaches of the Yangtze River, and a reversed correlation in South China and North China. On the decadal scale, the AHS and winter and spring snow cover over the TP have a close correlation with the decadal precipitation pattern shift (southern flood and northern drought) in East China. The mechanism on how the AHS over the TP influences rainfall in East China is discussed. The weakening of AHS over the TP in spring and summer reduces the thermodynamic difference between ocean and continent, leading to a weaker East Asian summer monsoon, which brings more water vapor to the Yangtze River Valley and less water vapor to North China. Meanwhile, the weakening of AHS over the TP renders the position of the subtropical high further westward and the rain belt lasting longer in the Yangtze River Valley, which causes more rain there and less rain in North China, thus showing the pattern of "southern flood and northern drought" in the latest 20 years. It is inferred that the increase of snow cover over the TP brings about the reduction of surface temperature and then surface heat source, leading eventually to the weakening of AHS there.展开更多
基金supported by the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period (Grant No. 2012BAC22B02)the National Key Basic Research Program of China (Grant No. 2013CB956603)the Ministry of Science and Technology of China (Grant No. 2013CBA01805)
文摘Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Flexible Global OceanAtmosphere-Land System (FGOALS) model,Grid-point Version 2 (g2) and Spectral Version 2 (s2),were validated against observational data.The results revealed that the spatial pattern of SD and SCF over the Northern Hemisphere (NH) are simulated well by both models,except over the Tibetan Plateau,with the average spatial correlation coefficient over all months being around 0.7 and 0.8 for SD and SCF,respectively.Although the onset of snow accumulation is captured wellby the two models in terms of the annual cycle of SD and SCF,g2 overestimates SD/SCF over most mid-and high-latitude areas of the NH.Analysis showed that g2 produces lower temperatures than s2 because it considers the indirect effects of aerosols in its atmospheric component,which is the primary driver for the SD/SCF difference between the two models.In addition,both models simulate the significant decreasing trend of SCF well over (30°-70°N) in winter during the period 1971-94.However,as g2 has a weak response to an increase in the concentration of CO2 and lower climate sensitivity,it presents weaker interannual variation compared to s2.
基金Under the auspices of the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28110502)Science and Technology Development Plan Project of Jilin Province(No.20220202035NC)+1 种基金National Natural Science Foundation of China(No.41871248)Changchun Science and Technology Development Plan Project(No.21ZY12)。
文摘Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western Jilin,China due to natural condi-tions and sparse observation.Hence,this study investigated the spatiotemporal patterns of snow cover using fine-resolution passive mi-crowave(PMW)snow depth(SD)data from 1987 to 2018,and revealed the potential influence of climate factors on SD variations.The results indicated that the interannual range of SD was between 2.90 cm and 9.60 cm during the snowy winter seasons and the annual mean SD showed a slightly increasing trend(P>0.05)at a rate of 0.009 cm/yr.In snowmelt periods,the snow cover contributed to an increase in volumetric soil water,and the change in SD was significantly affected by air temperature.The correlation between SD and air temperature was negative,while the correlation between SD and precipitation was positive during December and March.In March,the correlation coefficient exceeded 0.5 in Zhenlai,Da’an,Qianan,and Qianguo counties.However,the SD and precipitation were neg-atively correlated over western Jilin in October,and several subregions presented a negative correlation between SD and precipitation in November and April.
文摘By using the observational snow data of more than 700 weather stations,the interannual temporal and spatial characteristics of seasonal snow cover in China were analyzed.The results show that northern Xinjiang,northeastern China–Inner Mongolia,and the southwestern and southern portions of Tibetan Plateau are three regions in China with high seasonal snow cover and also an interannual anomaly of snow cover.According to the trend of both the snow depth and snow cover days,there are three changing patterns for the seasonal snow cover:The first type is that both snow depth and snow cover days simultaneously increase or decrease;this includes northern Xinjiang,middle and eastern Inner Mongolia,and so on.The second is that snow depth increases but snow cover days decrease;this type mainly locates in the eastern parts of the northeastern plain of China and the upper reaches of the Yangtze River.The last type is that snow depth decreases but snow cover days increase at the same time such as that in middle parts of Tibetan Plateau.Snow cover in China appears to have been having a slow increasing trend during the last 40 years.On the decadal scale,snow depth and snow cover days slightly increased in the 1960s and then decreased in the 1970s;they again turn to increasing in the 1980s and persist into 1990s.
基金supported by the National Natural Science Foundation of China(40901045)the China Meteorological Administration's special funds for scientific research on public causes(GYHY200906017)
文摘Using observed snow cover dam from Chinese meteorological stations, this study indicated that annual mean snow depth, Snow Water Equivalent (SWE), and snow density during 1957-2009 were 0.49 cm, 0.7 ram, and 0.14 g/cm3 over China as a whole, re- spectively. On average, they were all the smallest in the Qinghai-Tibetan Plateau (QTP), and were greater in northwestern China (NW). Spatially, the regions with greater annual mean snow depth and SWE were located in northeastern China including eastern Inner Mongolia (NE), northern Xinjiang municipality, and a small fraction of southwestern QTP. Annual mean snow density was below 0.14 g/cm3 in most of China, and was higher in the QTP, NE, and NW. The trend analyses revealed that both annual mean snow depth and SWE presented increasing trends in NE, NW, the QTP, and China as a whole during 1957-2009. Although the trend in China as a whole was not significant, the amplitude of variation became increasingly greater in the second half of the 20th century. Spatially, the statistically significant (95%-level) positive trends for annual mean snow depth were located in western and northem NE, northwestem Xinjiang municipality, and northeastem QTP. The distribution of positive and negative trends for annu- al mean SWE were similar to that of snow depth in position, but not in range. The range with positive trends of SWE was not as large as that of snow depth, but the range with negative trends was larger.
基金supported by the National Basic Research Program of China (2007CB411506)the State Key Laboratory of Cryospheric Science (SKLCS08-06)
文摘In order to analyze the differences between the two snow cover data, the snow cover data of 884 meteorological stations in China from 1951 to 2005 are counted. The data include days of visual snow observation, snow depth, and snow cover durations, which vary according to different definitions of snow cover days. Two series of data, as defined by "snow depth" and by "weather obser- vation," are investigated here. Our results show that there is no apparent difference between them in east China and the Xinjiang region, but in northeast China and the Tibetan Plateau the "weather observation" data vary by more than 10 days and the "snow depth" data vary by 0.4 cm. Especially in the Tibetan Plateau, there are at least 15 more days of"weather observation" snow in most areas (sometimes more than 30 days). There is an obvious difference in the snow cover data due to bimodal snowfall data in the Tibetan Plateau, which has peak snowfalls from September to October and from .April to May. At those times the temperature is too high for snow cover fol:mation mad only a few days have trace snow cover. Also, the characteristics and changing trends of snow cover are analyzed here based on the snow cover data of nine weather stations iri the northeast region of the Tibetan Plateau, by the Mann-KendaU test. The results show significantly fewer days of snow cover and shorter snow dtwations as defined by "snow depth" compared to that as defined by "weather observation." Mann-Kendall tests of both series of snow cover durations show an abrupt change in 1987.
文摘About one third of the water needed for agriculture in the world is generated by melting snow. Snow cover, surface and ground water recharge are considered as sustainable and renewable resources. It is therefore necessary to identify and study these criteria. The aim of this study is to determine the spatial and temporal distribution of snow cover in the district of the Sheshpir basin in Fars province (in south of Iran). Ground-based observation of snow covers, especially in mountainous areas, is associated with many problems due to the insufficient accuracy of optical observation, as opposed to digital observation. Therefore, GIS and remote sensing technology can be partially effective in solving this problem. Images of Landsat 5<sup>TM</sup> and Landsat 7<sup>TM</sup> satellites were used to derive snow cover maps. The images in ENVI 4.8 software were classified by using the maximum likelihood algorithm. Other spatial analyses were performed in ARC-GIS 9.3 software. The maximum likelihood method was accuracy assessed by operation points of testing. The least and the average of overall accuracy of produced maps were found to be 91% and 98%, respectively. This demonstrates that the maximum likelihood method has high performance in the classification of images. Overall snow cover and the review of terrain through the years 2008-2009 and 2009-2010 showed that snow cover begins to accumulate in November and reaches its highest magnitude in February. Finally, no trace of snow can be observed on the surface of the basin in the month of May. By average, 34% of the basin is covered in snow from November through to May.
文摘A precise prediction of maximum scour depth around bridge foundations under ice covered condition is crucial for their safe design because underestimation may result in bridge failure and over-estimation will lead to unnecessary construction costs. Compared to pier scour depth predictions within an open channel, few studies have attempted to predict the extent of pier scour depth under ice-covered condition. The present work examines scour under ice by using a series of clear-water flume experiments employing two adjacent circular bridge piers in a uniform bed were exposed to open channel and both rough and smooth ice covered channels. The measured scour depths were compared to three commonly used bridge scour equations including Gao’s simplified equation, the HEC-18/Jones equation, and the Froehlich Design Equation. The present study has several advantages as it adds to the understanding of the physics of bridge pier scour under ice cover flow condition, it checks the validity and reliability of commonly used bridge pier equations, and it reveals whether they are valid for the case of scour under ice-covered flow conditions. In addition, it explains how accurately an equation developed for scour under open channel flow can predict scour around bridge piers under ice-covered flow condition.
基金This work was conducted unlder the joint support of the National Natural Sciences Foundation of China under Grant Nos.40005008 and 40135020the Chinese Academy Project ZKCX2-SW-210.
文摘There exists great uncertainty in parameterizing snow cover fraction in most general circulation models (GCMs) using various empirical formulae, which has great influence on the performance of GCMs. This work reviews the commonly used relationships between region-averaged snow depth (or snow water equivalent) and snow cover extent (or fraction) and suggests a new empirical formula to compute snow cover fraction, which only depends on the domain-averaged snow depth, for GCMs with different horizontal resolution. The new empirical formula is deduced based on the 10-yr (1978-1987) 0.5°× 0.5° weekly snow depth data of the scanning multichannel microwave radiometer (SMMR) driven from the Nimbus-7 Satellite. Its validation to estimate snow cover for various GCM resolutions was tested using the climatology of NOAA satellite-observed snow cover.
基金supported by the National Natural Science Foundation of China[Grant No.42041004]the“Innovation Star”Project for Outstanding Postgraduates of Gansu Province[Grant No.2022CXZX-107]the Central Universities[Grant No.lzujbky-2019-kb30].
文摘The spring flood of 2009 in the Red River Valley was exacerbated with severe ice breakup and ice jamming. To assist ice jam mitigation by cutting and breaking up the river ice cover before the flood season and to support the operation of the Red River Floodway, Manitoba Water Stewardship is striving to model the occurrence of ice breakup and simulate the behaviour of ice jamming along the river. An important parameter in ice breakup forecasting is the ice thickness. RADARSAT-2 standard satellite images were collected along the course of the Red River in Manitoba during the 2009-2010 winter to help determine ice thicknesses along the river. Standard images can have transmit-receive polarizations in the horizontal-horizontal (HH) or horizontal-vertical (HV) configurations. Ice thickness measurements were taken in the field during the same time frame when the satellite passed over the Red River Valley. Good correlations were obtained between the HH-backscatter readings and the surveyed ice thicknesses. HV-backscatter readings correlate better with fresh snow depth measurements. Additionally, using same sensor incident angle and flight geometry allows ice thickening rate behavior over the course of the winter to be determined.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2013CBA01802)National Natural Science Foundation of China(41401414 and 41271356)+2 种基金Open Fund from the State Key Laboratory of Cryosphere Science(SKLCS-OP-2013-03)British Council Researcher Links and Royal Academy of Engineers Grants awarded under the Newton-AlFarabi Partnership ProgramTarget Program(0115RK03041)from the Ministry of Education and Science of the Republic of Kazakhstan
文摘Snow cover plays an important role in the hydrological cycle and water management in Kazakhstan. However, traditional observations do not meet current needs. In this study, a snow depth retrieval equation was developed based on passive microwave remote sensing data. The average snow depth in winter (ASDW), snow cover duration (SCD), monthly maximum snow depth (MMSD), and annual average snow depth (AASD) were derived for each year to monitor the spatial and temporal snow distributions. The SCD exhibited significant spatial variations from 30 to 250 days. The longest SCD was found in the mountainous area in eastern Kazakhstan, reaching values between 200 and 250 days in 2005. The AASD increased from the south to the north and maintained latitudinal zonality. The MMSD in most areas ranged from 20 to 30 cm. The ASDW values ranged regularity of latitudinal zonality from 15 to 20 cm in the eastern region and were characterized by spatial The ASDW in the mountainous area often exceeded 20 cm.
基金Supported by the National Natural Science Foundation of China (No.70361001).
文摘This paper proposes an applicable approach for snow information abstraction in northern Xinjiang Basin using MODIS data. Linear spectral mixture analysis (LSMA) was used to calculate snow cover fractions (SF) within a pixel, which was used to establish a regression function with NDSI. In addition, 80 snow depths samples were collected in the study region. The correlation between image spectra reflectance and snow depth as well as the comparison between measured snow spectra and image spectra was analyzed. An algorithm was developed for snow depth inversion on the basis of the correlation between snow depth and snow spectra in the region. The results indicated that the model of SF had a high accuracy with the mean absolute error 0.06 tested by 26 true measured values and the validation for snow depth model using another dataset with 50 sampling sites showed an RMSE of 1.63. Our study showed that MODIS data provide an alternative method for snow information abstraction through development of algorithms suitable for local application.
基金the Ministry of Science and Technology of China under Grant No.2001BA611-01the National Natural Science Foundation of China under Grant No.40705033
文摘By using a reverse computation method and the NCEP/NCAR daily reanalysis data from 1960 to 2004, the atmospheric heat source (AHS) was calculated and analyzed. The results show that AHS over the Tibetan Plateau (TP) and its neighboring areas takes on a persistent downtrend in spring and summer during the foregone 50 years, especially the latest 20 years. Snow depth at 50 stations over the TP in winter and spring presents an increase, especially the spring snow depth exhibits a sharp increase in the late 1970s. A close negative correlation exists between snow cover and AHS over the TP and its neighboring areas, as revealed by an SVD analysis, namely if there is more snow over the TP in winter and spring, then the weaker AHS would appear over the TP in spring and summer. The SVD analysis between AHS over the TP in spring and summer and rainfall at 160 stations indicates that the former has a negative correlation with summer precipitation in the middle and lower reaches of the Yangtze River, and a positive correlation with that in South China and North China. The SVD analysis of both snow cover over the TP in winter and spring and rainfall at the same 160 stations indicates that the former has a marked positive correlation with precipitation in the middle and lower reaches of the Yangtze River, and a reversed correlation in South China and North China. On the decadal scale, the AHS and winter and spring snow cover over the TP have a close correlation with the decadal precipitation pattern shift (southern flood and northern drought) in East China. The mechanism on how the AHS over the TP influences rainfall in East China is discussed. The weakening of AHS over the TP in spring and summer reduces the thermodynamic difference between ocean and continent, leading to a weaker East Asian summer monsoon, which brings more water vapor to the Yangtze River Valley and less water vapor to North China. Meanwhile, the weakening of AHS over the TP renders the position of the subtropical high further westward and the rain belt lasting longer in the Yangtze River Valley, which causes more rain there and less rain in North China, thus showing the pattern of "southern flood and northern drought" in the latest 20 years. It is inferred that the increase of snow cover over the TP brings about the reduction of surface temperature and then surface heat source, leading eventually to the weakening of AHS there.