The chaotic characteristics and maximum predictable time scale of the observation series of hourly water consumption in Hangzhou were investigated using the advanced algorithm presented here is based on the convention...The chaotic characteristics and maximum predictable time scale of the observation series of hourly water consumption in Hangzhou were investigated using the advanced algorithm presented here is based on the conventional Wolf's algorithm for the largest Lyapunov exponent. For comparison, the largest Lyapunov exponents of water consumption series with one-hour and 24-hour intervals were calculated respectively. The results indicated that chaotic characteristics obviously exist in the hourly water consumption system; and that observation series with 24-hour interval have longer maximum predictable scale than hourly series. These findings could have significant practical application for better prediction of urban hourly water consumption.展开更多
Multipath time delay estimation is constrained by the width of the signal correlation function when using correlation based methods. This paper obtains a high resolution time delay estimation by introducing Burg algor...Multipath time delay estimation is constrained by the width of the signal correlation function when using correlation based methods. This paper obtains a high resolution time delay estimation by introducing Burg algorithm and Marple algorithm of the maximum entropy power spectral estimation to non-resolvable multipath time delay estimatoin. The principles, the performaces and the results of computer simulation are given.展开更多
Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal mo...Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.展开更多
随着全球定位系统的发展和应用,巨量的轨迹数据被实时收集,给数据的传输、存储和分析带来挑战.基于分段线性近似(piecewise linear approximation,PLA)的数据压缩技术因具有简单直观、压缩存储低和传输快的特点被广泛应用和研究.针对现...随着全球定位系统的发展和应用,巨量的轨迹数据被实时收集,给数据的传输、存储和分析带来挑战.基于分段线性近似(piecewise linear approximation,PLA)的数据压缩技术因具有简单直观、压缩存储低和传输快的特点被广泛应用和研究.针对现有轨迹PLA压缩方法不能最优化地在线压缩多维数据的现状,在最大误差限定(maximum error bound,记为L_(∞))下提出多维轨迹数据的最优化PLA压缩问题(记为m DisPLA_(∞)),并给出一种在线MDisPLA算法予以解决.该算法利用“分治-融合”的策略扩展一维最优化PLA算法,以最优化地压缩多维轨迹数据.MDisPLA算法具有线性时间复杂性,可以生成最少的不连续分割,且可以保证生成直线表示的质量,即原始数据点和对应解压缩点之间的同步误差具有上界.通过与基于同步距离锥交(cone intersection using the synchronous Euclidean distance,CISED)的轨迹压缩算法进行理论和实验比较,验证了MDisPLA算法是稳健的,可生成具有保质性的直线表示.MDisPLA算法以更低的内存消耗,较CISED算法提高了14倍左右的处理速度,降低了约48%的分割个数和10.5%的存储个数.MDisPLA算法在保证压缩质量的同时,显著提高了处理速度和降低了存储空间,整体上优于CISED算法.展开更多
基金Project (No. 50078048) supported by the National Natural Science Foundation of China
文摘The chaotic characteristics and maximum predictable time scale of the observation series of hourly water consumption in Hangzhou were investigated using the advanced algorithm presented here is based on the conventional Wolf's algorithm for the largest Lyapunov exponent. For comparison, the largest Lyapunov exponents of water consumption series with one-hour and 24-hour intervals were calculated respectively. The results indicated that chaotic characteristics obviously exist in the hourly water consumption system; and that observation series with 24-hour interval have longer maximum predictable scale than hourly series. These findings could have significant practical application for better prediction of urban hourly water consumption.
基金Supported by the of Doctoral Foundation of the State Education Commission of China
文摘Multipath time delay estimation is constrained by the width of the signal correlation function when using correlation based methods. This paper obtains a high resolution time delay estimation by introducing Burg algorithm and Marple algorithm of the maximum entropy power spectral estimation to non-resolvable multipath time delay estimatoin. The principles, the performaces and the results of computer simulation are given.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900502the National Science Foundation of China under Grant 62001179the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111。
文摘Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.
文摘随着全球定位系统的发展和应用,巨量的轨迹数据被实时收集,给数据的传输、存储和分析带来挑战.基于分段线性近似(piecewise linear approximation,PLA)的数据压缩技术因具有简单直观、压缩存储低和传输快的特点被广泛应用和研究.针对现有轨迹PLA压缩方法不能最优化地在线压缩多维数据的现状,在最大误差限定(maximum error bound,记为L_(∞))下提出多维轨迹数据的最优化PLA压缩问题(记为m DisPLA_(∞)),并给出一种在线MDisPLA算法予以解决.该算法利用“分治-融合”的策略扩展一维最优化PLA算法,以最优化地压缩多维轨迹数据.MDisPLA算法具有线性时间复杂性,可以生成最少的不连续分割,且可以保证生成直线表示的质量,即原始数据点和对应解压缩点之间的同步误差具有上界.通过与基于同步距离锥交(cone intersection using the synchronous Euclidean distance,CISED)的轨迹压缩算法进行理论和实验比较,验证了MDisPLA算法是稳健的,可生成具有保质性的直线表示.MDisPLA算法以更低的内存消耗,较CISED算法提高了14倍左右的处理速度,降低了约48%的分割个数和10.5%的存储个数.MDisPLA算法在保证压缩质量的同时,显著提高了处理速度和降低了存储空间,整体上优于CISED算法.