为了研究桥墩结构的震后功能可恢复性,针对附加自复位耗能支撑(self-centering energy dissipation braces,SCEB)双柱式桥墩结构进行基于增量动力分析方法的地震易损性分析,采用最大侧移率和残余侧移率作为性能指标,系统探讨其在近场脉...为了研究桥墩结构的震后功能可恢复性,针对附加自复位耗能支撑(self-centering energy dissipation braces,SCEB)双柱式桥墩结构进行基于增量动力分析方法的地震易损性分析,采用最大侧移率和残余侧移率作为性能指标,系统探讨其在近场脉冲型地震动作用下的失效概率.为了对比分析,同时选取60条远场无脉冲型地震动记录对附加SCEB桥墩结构进行了易损性分析.结果表明:在小震作用下,SCEB仅为桥墩结构提供刚度和承载力,在大震作用下还可提供耗能能力,同时可以提供良好的自复位能力;附加SCEB可有效降低桥墩结构在近场脉冲型地震动作用下的失效概率(最大侧移率和残余侧移率),特别是残余侧移率;附加SCEB桥墩结构在近场脉冲型地震动作用下的失效概率大于远场无脉冲型地震动作用下的失效概率.自复位耗能支撑可有效减小桥墩结构的失效概率,提高桥墩结构的抗震性能.展开更多
Much effort has been made in investigating the seismic response and failure mechanism of rectangular subway stations,however,the influence of earth retaining systems has generally been ignored in previous studies.This...Much effort has been made in investigating the seismic response and failure mechanism of rectangular subway stations,however,the influence of earth retaining systems has generally been ignored in previous studies.This paper presents a numerical study on the seismic performance of a rectangular subway station with/without earth retaining systems by taking fender piles as the example,and aims to illustrate how the existence of fender piles affects seismic responses on subway stations.The loading conditions of subway stations and their surrounding soils prior to earthquakes are discussed.Next,seismic responses of subway stations with or without fender piles were simulated.Afterward,earthquake-induced deformations of stations and surrounding soils,as well as the internal forces and damage modes of the structural components,were systematically studied.Consequently,the seismic performance of the stations was affected by the existence of fender piles.In addition,earthquake intensity is illustrated.The study showed that deformation modes of surrounding soils and damage modes of stations were different with regard to the existence of fender piles.Meanwhile,earthquake intensity influencing the seismic performance of stations with or without fender piles were found to be opposite.展开更多
文摘为了研究桥墩结构的震后功能可恢复性,针对附加自复位耗能支撑(self-centering energy dissipation braces,SCEB)双柱式桥墩结构进行基于增量动力分析方法的地震易损性分析,采用最大侧移率和残余侧移率作为性能指标,系统探讨其在近场脉冲型地震动作用下的失效概率.为了对比分析,同时选取60条远场无脉冲型地震动记录对附加SCEB桥墩结构进行了易损性分析.结果表明:在小震作用下,SCEB仅为桥墩结构提供刚度和承载力,在大震作用下还可提供耗能能力,同时可以提供良好的自复位能力;附加SCEB可有效降低桥墩结构在近场脉冲型地震动作用下的失效概率(最大侧移率和残余侧移率),特别是残余侧移率;附加SCEB桥墩结构在近场脉冲型地震动作用下的失效概率大于远场无脉冲型地震动作用下的失效概率.自复位耗能支撑可有效减小桥墩结构的失效概率,提高桥墩结构的抗震性能.
基金National Natural Science Foundation of Beijing under Grant No.8212007the National Natural Science Foundation of China under Grant Nos.51808028,52025084 and 51778026+1 种基金the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant No.JDYC20200311the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture(X18147)。
文摘Much effort has been made in investigating the seismic response and failure mechanism of rectangular subway stations,however,the influence of earth retaining systems has generally been ignored in previous studies.This paper presents a numerical study on the seismic performance of a rectangular subway station with/without earth retaining systems by taking fender piles as the example,and aims to illustrate how the existence of fender piles affects seismic responses on subway stations.The loading conditions of subway stations and their surrounding soils prior to earthquakes are discussed.Next,seismic responses of subway stations with or without fender piles were simulated.Afterward,earthquake-induced deformations of stations and surrounding soils,as well as the internal forces and damage modes of the structural components,were systematically studied.Consequently,the seismic performance of the stations was affected by the existence of fender piles.In addition,earthquake intensity is illustrated.The study showed that deformation modes of surrounding soils and damage modes of stations were different with regard to the existence of fender piles.Meanwhile,earthquake intensity influencing the seismic performance of stations with or without fender piles were found to be opposite.