For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential ...For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential equations of the second-order. So it is important to develop Asgeirsson mean value theorem. The mean value of solution for the higher order equation hay been discussed primarily and has no exact result at present. The mean value theorem for the higher order equation can be deduced and satisfied generalized biaxial symmetry potential equation by using the result of Asgeirsson mean value theorem and the properties of derivation and integration. Moreover, the mean value formula can be obtained by using the regular solutions of potential equation and the special properties of Jacobi polynomials. Its converse theorem is also proved. The obtained results make it possible to discuss on continuation of the solutions and well posed problem.展开更多
By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′...By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′(1)=0, where the nonlinear term contains first and second derivatives of unknown function. In this theorem the nonlinear term f(t, u, v, w) may be singular at t = 0 and t = 1. The main ingredient is Leray-Schauder nonlinear alternative.展开更多
In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution...In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.展开更多
The mean value theorem for derivatives says that for a given function over a closed and bounded interval, there is a point <em>P</em> on the graph such that the tangent at <em>P</em> is paralle...The mean value theorem for derivatives says that for a given function over a closed and bounded interval, there is a point <em>P</em> on the graph such that the tangent at <em>P</em> is parallel to the secant through the two endpoints. The mean value theorem for definite integrals says that the area under the function is equal to the area of a rectangle whose base is the length of the interval and height of some point <em>Q</em> on the graph. These two theorems have been studied and utilized extensively and they form the backbone of many important theorems in different branches of mathematics. In this note, we pose the question: for what functions do the two points <em>P </em>and <em>Q</em> always coincide? We find that the only analytic functions satisfying this condition are linear or exponential functions.展开更多
In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fra...In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.展开更多
This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-...In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.展开更多
This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects.The arguments are based upon Schauder and Banac...This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects.The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in[B.Ahmad,S.Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations,Nonlinear Analysis:Hybrid Systems,3(2009),251- 258].展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
In this paper we discuss stochastic differential equations with a kind of periodic boundary value conditions(in sense of mean value). Appealing to the decomposition of equations, the existence of solutions is obtain...In this paper we discuss stochastic differential equations with a kind of periodic boundary value conditions(in sense of mean value). Appealing to the decomposition of equations, the existence of solutions is obtained by using the contraction mapping principle and Leray-Schauder fixed point theorem, respectively.展开更多
This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By u...This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By using certain fixed point theorem based on degree theory,some sufficient conditions for solvability of the above problems are given.展开更多
In this paper, the random Euler and random Runge-Kutta of the second order methods are used in solving random differential initial value problems of first order. The conditions of the mean square convergence of the nu...In this paper, the random Euler and random Runge-Kutta of the second order methods are used in solving random differential initial value problems of first order. The conditions of the mean square convergence of the numerical solutions are studied. The statistical properties of the numerical solutions are computed through numerical case studies.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
Abstract In this paper, the fixed point theorem is applied to investigate the existence of solutions of Sturm Liouville boundary value problems for nonlinear second order impulsive differential equations in Banach spa...Abstract In this paper, the fixed point theorem is applied to investigate the existence of solutions of Sturm Liouville boundary value problems for nonlinear second order impulsive differential equations in Banach spaces.展开更多
In this paper, parabolic type differential inclusions with time dependent ape considered and this problem is related to the study of the nonlinear distributed parameter central systems. An existence theorem of mild-so...In this paper, parabolic type differential inclusions with time dependent ape considered and this problem is related to the study of the nonlinear distributed parameter central systems. An existence theorem of mild-solutions is proved, and a property of the solution set is given. The directions and the results by J.P. Aubin et al. are generalized and improved.展开更多
A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhi...A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhin and constructing the suitable operators,the existence theorem of at least one solution has been established. An example is given to illustrate our result.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed poi...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in t...The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.展开更多
文摘For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential equations of the second-order. So it is important to develop Asgeirsson mean value theorem. The mean value of solution for the higher order equation hay been discussed primarily and has no exact result at present. The mean value theorem for the higher order equation can be deduced and satisfied generalized biaxial symmetry potential equation by using the result of Asgeirsson mean value theorem and the properties of derivation and integration. Moreover, the mean value formula can be obtained by using the regular solutions of potential equation and the special properties of Jacobi polynomials. Its converse theorem is also proved. The obtained results make it possible to discuss on continuation of the solutions and well posed problem.
文摘By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′(1)=0, where the nonlinear term contains first and second derivatives of unknown function. In this theorem the nonlinear term f(t, u, v, w) may be singular at t = 0 and t = 1. The main ingredient is Leray-Schauder nonlinear alternative.
基金Supported by the NNSF of China(ll071001) Supported by the NSF" of the Anhui Higher Education Institutions of China(KJ2013B276) Supporied by the Key Program of the Natural Science Foundation for the Excellent Youth Scholars of Anhui Higher Education Institutions of China (2013SQRL142ZD)
文摘In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.
文摘The mean value theorem for derivatives says that for a given function over a closed and bounded interval, there is a point <em>P</em> on the graph such that the tangent at <em>P</em> is parallel to the secant through the two endpoints. The mean value theorem for definite integrals says that the area under the function is equal to the area of a rectangle whose base is the length of the interval and height of some point <em>Q</em> on the graph. These two theorems have been studied and utilized extensively and they form the backbone of many important theorems in different branches of mathematics. In this note, we pose the question: for what functions do the two points <em>P </em>and <em>Q</em> always coincide? We find that the only analytic functions satisfying this condition are linear or exponential functions.
基金Supported by the Research Fund for the Doctoral Program of High Education of China(20094407110001)Supported by the NSF of Guangdong Province(10151063101000003)
文摘In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
文摘This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.
文摘In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
基金Supported by the National Nature Science Foundation of China(11071001)Supported by the Key Program of Ministry of Education of China(205068)
文摘In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.
基金The NSF(10971221)of ChinaThe Youth Research Found(2009QS07)of China University of Mining and Technology,Beijing
文摘This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects.The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in[B.Ahmad,S.Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations,Nonlinear Analysis:Hybrid Systems,3(2009),251- 258].
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
基金The NSF(1308085MA01,1508085QA01)of Anhui Provincethe Provincial Natural Science Research Project(KJ2014A010)of Anhui Colleges+1 种基金the National Natural Science Youth Foundation(11301004)of ChinaOutstanding Youth Key Foundation(2013SQRL087ZD)of Colleges and Universities in Anhui Province
文摘In this paper we discuss stochastic differential equations with a kind of periodic boundary value conditions(in sense of mean value). Appealing to the decomposition of equations, the existence of solutions is obtained by using the contraction mapping principle and Leray-Schauder fixed point theorem, respectively.
文摘This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By using certain fixed point theorem based on degree theory,some sufficient conditions for solvability of the above problems are given.
文摘In this paper, the random Euler and random Runge-Kutta of the second order methods are used in solving random differential initial value problems of first order. The conditions of the mean square convergence of the numerical solutions are studied. The statistical properties of the numerical solutions are computed through numerical case studies.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
文摘Abstract In this paper, the fixed point theorem is applied to investigate the existence of solutions of Sturm Liouville boundary value problems for nonlinear second order impulsive differential equations in Banach spaces.
文摘In this paper, parabolic type differential inclusions with time dependent ape considered and this problem is related to the study of the nonlinear distributed parameter central systems. An existence theorem of mild-solutions is proved, and a property of the solution set is given. The directions and the results by J.P. Aubin et al. are generalized and improved.
基金National Natural Science Foundation of China(No.11271248)
文摘A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhin and constructing the suitable operators,the existence theorem of at least one solution has been established. An example is given to illustrate our result.
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
文摘The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.