Cambrian shales in China and elsewhere contain abundant oil and gas resources.However,due to its deep burial and limited outcrop,there has been relatively little research conducted on it.The Cambrian shale of the Tado...Cambrian shales in China and elsewhere contain abundant oil and gas resources.However,due to its deep burial and limited outcrop,there has been relatively little research conducted on it.The Cambrian shale of the Tadong low uplift in the Tarim Basin of western China,specifically the Xidashan-Xishanbulake Formation(Fm.)and overlying Moheershan Fm.provide a case study through the use of organic petrology,mineralogy,organic and elemental geochemistry,with the aim of analyzing and exploring the hydrocarbon generation potential(PG)and organic matter(OM)enrichment mechanisms within these shale formations.The results indicate that:(1)the Cambrian shale of the Tadong low uplift exhibits relatively dispersed OM that consists of vitrinite-like macerals and solid bitumen.These formations have a higher content of quartz and are primarily composed of silica-based lithology;(2)shale samples from the Xidashan-Xishanbulake and Moheershan formations demonstrate high total organic carbon(TOC)and low pyrolytic hydrocarbon content(S_(2))content.The OM is predominantly typeⅠand typeⅡkerogens,indicating a high level of maturation in the wet gas period.These shales have undergone extensive hydrocarbon generation,showing characteristics of relatively poor PG;(3)the sedimentary environments of the Xidashan-Xishanbulake and Moheershan formations in the Tadong low uplift are similar.They were deposited in warm and humid climatic conditions,in oxygen-deficient environments,with stable terrigenous inputs,high paleoproductivity,high paleosalinity,weak water-holding capacity,and no significant hydrothermal activity;and(4)the relationship between TOC and the paleoproductivity parameter(P/Ti)is most significant in the Lower Cambrian Xidashan-Xishanbulake Fm.,whereas correlation with other indicators is not evident.This suggests a productivity-driven OM enrichment model,where input of landderived material was relatively small during the Middle Cambrian,and the ancient water exhibited lower salinity.A comprehensive pattern was formed under the combined control of paleoproductivity and preservation conditions.This study provides valuable guidance for oil and gas exploration in the Tarim Basin.展开更多
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-...The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.展开更多
The Upper Paleozoic in the north part of Tianhuan depression in the Ordos Basin,NW China has lower hydrocarbon generation intensity and complex gas-water relationship,the main factors controlling the formation of tigh...The Upper Paleozoic in the north part of Tianhuan depression in the Ordos Basin,NW China has lower hydrocarbon generation intensity and complex gas-water relationship,the main factors controlling the formation of tight sandstone gas and the distribution of tight sandstone gas in the low hydrocarbon generation intensity area are studied.Through two-dimensional physical simulation experiment of hydrocarbon accumulation,analysis of reservoir micro-pore-throat hydrocarbon system and dissection of typical gas reservoirs,the evaluation models of gas injection pressure,reservoir physical property,and gas generation threshold were established to determine the features of tight gas reservoirs in low hydrocarbon intensity area:(1)at the burial depth of less than 3 000 m,the hydrocarbon generation intensity ofis high enough to maintain effective charging;(2)tight sandstone in large scale occurrence is conducive to accumulation of tight gas;(3)differences in reservoir physical property control the distribution of gas pool,for the channel sandstone reservoirs,ones with better physical properties generally concentrate in the middle of sandstone zone and local structural highs;ones with poor physical properties have low gas content generally.Based on the dissection of the gas reservoir in the north Tianhuan depression,the formation of tight gas reservoirs in low hydrocarbon generating intensity area are characterized by"long term continuous charging under hydrocarbon generation pressure,gas accumulation in large scale tight sandstone,pool control by difference in reservoir physical property,and local sweet spot",and the tight gas pools are distributed in discontinuous"sheets"on the plane.This understanding has been proved by expanding exploration of tight sandstone gas in the north Tianhuan depression.展开更多
In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared all...In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared alloys in Na Cl solutions have been investigated with the help of nonlinear and linear fitting by Avrami-Erofeev and Arrhenius equations.Combining the microstructure information before and after hydrolysis and thermodynamics fitting results,the hydrolysis H_(2) generation mechanism based on nucleation&growth has been elaborated.The final H_(2) generation capacities of 0La,5La,10La and 15 La alloys are 677,653,641 and 770 m L·g^(-1)H_(2) in 240 min at291 K,respectively.While,the final H_(2) generation capacities of HEBM 0La,5La,10La and 15 La alloys are 632,824,611 and 653 m L·g^(-1)H_(2) in 20 min at 291 K,respectively.The as-cast 15La alloy and HEMB 5La alloy present the best H_(2) production rates and final H_(2) production capacities,especially the HEBM 5La can rapidly achieve high H_(2) generation capacity(670 and 824 m L·g^(-1)H_(2) )at low temperature(291 K)within short time(5 and 20 min).The difference between the H_(2) generation capacities is mainly originated from the initial nucleation rate of Mg(OH)_(2) and the subsequent processes affected by the microstructures and phase compositions of the hydrolysis alloys.Relative low initial nucleation rate and fully growth of Mg(OH)_(2) nucleus are the premise of high H_(2) generation capacity due to the hydrolysis H_(2) generation process consisted by the nucleation,growth and contacting of Mg(OH)_(2) nucleus.To utilization H_(2) by designing solid state H_(2) generators using optimized Mg-based alloys is expected to be a feasible H_(2) generation strategy at the moment.展开更多
The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER...The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field.展开更多
The effects of chloride salts(NaCl,MgCl2and NH4Cl)on the hydrolysis kinetics of MgH2prepared by hydridingcombustion synthesis and mechanical milling(HCS+MM)were discussed.X-ray diffraction(XRD)analyses show that high-...The effects of chloride salts(NaCl,MgCl2and NH4Cl)on the hydrolysis kinetics of MgH2prepared by hydridingcombustion synthesis and mechanical milling(HCS+MM)were discussed.X-ray diffraction(XRD)analyses show that high-purityMgH2was successfully prepared by HCS.Hydrolysis performance test results indicate that the chloride salt added during the millingprocess is favorable to the initial reaction rate and hydrogen generation yield within60min.A MgH2?10%NH4Cl composite exhibitsthe best performance with the hydrogen generation yield of1311mL/g and a conversion rate of85.69%in60min at roomtemperature.It is suggested that the chloride salts not only play as grinding aids in the milling process,but also create fresh surface ofreactive materials,favoring the hydrolysis reaction.展开更多
A generation planning model of six main power grids in China is developed to evaluate the potential of advanced power generation technologies into the Chinese power system as CDM (clean development mechanism). It is...A generation planning model of six main power grids in China is developed to evaluate the potential of advanced power generation technologies into the Chinese power system as CDM (clean development mechanism). It is investigated how delivered coal price, on-grid power price, and environmental protection may influence the potential of advanced thermal power generation as CDM projects. One finding from the baseline analysis is that coal price, on-grid power price, and environmental protection policy have only a small significance to the grid-wide specific CO2 emissions of thermal power generation up to the year 2026, while the best thermal generation mix is influenced largely by environmental protection policy. And it is found that not only the price of CER (certified emission reduction) and the length of crediting period but also on-grid power price and the reduction of air pollutants in the baseline have a significant influence on the potential of the CDM activities.展开更多
A preliminary field-based investigation was undertaken in a small(<10 km^(2))river valley located in the mountainous Jura region of northwest Switzerland.The aims of the work were to assess sediment generation and ...A preliminary field-based investigation was undertaken in a small(<10 km^(2))river valley located in the mountainous Jura region of northwest Switzerland.The aims of the work were to assess sediment generation and annual sediment transport rates by tree throw on forested hillslopes,and to document surface hydrology characteristics on four fresh soil mounds associated with recent tree throws over a 24-day monitoring period.For the soil mounds,average sediment recovery ranged from 7.7-28.2 g(dry weight),equivalent to a suspended sediment concentration of 145.2-327.8 g L^(-1),and runoff coefficients ranged from 1.0%-4.2%.Based on a soil bulk density value of 1,044 kg m^(-3),upslope runoff generation areas were denuded by an average 0.14 mm by the end of the 24-day monitoring period,representing an erosion rate equivalent to 2.1 mm yr^(-1).A ca.50 cm high soil mound could therefore feasibly persist for around 200-250 years.For tree throw work,the dimensions of 215 individual tree throws were measured and their locations mapped in 12 separate locations along the river valley representing a cumulative area equivalent to 5.3 ha(av.density,43 per ha).Tree throws generated a total of 20.1 m^(3) of fine-sediment(<2 mm diameter),or the equivalent of 3.8×10^(-4) m^(3) m^(-2).The process of tree throw was originally attributed to two extreme weather events that occurred in west and central Europe in late December 1999.Taking the 18-year period since both storms,this represents an annual sediment transport rate of 2.7×10^(-5) m^(3) m^(-1) yr^(-1).Exploring the relationship with wind on fall direction,65.5%of tree throws(143)generally fell in a downslope direction irrespective of hillslope aspect on which they were located.This infers that individual storms may not have been responsible for the majority of tree throws,but instead,could be associated with root failure.Given the high density of tree throws and their relative maturity(average age 41 years),we hypothesise that once trees attain a certain age in this river valley,their physiognomy(i.e.height,mass and centre of gravity)compromises their ability to remain securely anchored.We tentatively attribute this possibility to the presence of bedrock close to the surface,and to the shallow soil profile overlaying steep hillslopes.展开更多
We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation(AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which expo...We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation(AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-iondoped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo's intensity and efficiency. The theoretical analysis is validated by numerical simulations.展开更多
Source and occurrence of Excess Coalbed Methane is a long-term concern research topic in Coal Geology and Structural Geology. Since it is essential to understand the outburst mechanism of coal gas, and to support the ...Source and occurrence of Excess Coalbed Methane is a long-term concern research topic in Coal Geology and Structural Geology. Since it is essential to understand the outburst mechanism of coal gas, and to support the coalbed methane development projects as the theoretical basis. We found in the study that, huge imparity is behind the evolutionary trend on molecular structure and the mechanism of influence from different deformation. The thesis demonstrates its probable routes of gas evolution according to distinct deformation mechanisms of coal. In the role of brittle deformation mechanism, a rapidly formed advantage rupture surface along with sliding motion from which has worked on coal. As another result, mechanical energy has transformed into friction and kinetic energy during the process. Kinetic energy increases simultaneously, which brings some results, that the new generated gas molecule. While the chemical structure of coal remains in a steady-state and do not react easily an outburst with gas. Mechanical energy turns into strain energy through its ductile deformation mechanism. The dislocation or lamellar slip made disordered between the constitutional units of aromatic rings and aromatic lamellas, as soon as secondary structural defects created. On another hand, molecular motion accelerates and splits off the small molecular on the side chain, due to the dissociation of aromatic nucleus;CH<sub>4 </sub>gas molecular was generated and placed in the secondary structural defect of coal, along with a great deal of strain energy in non-steady-state. By breaking away the balance maintaining terms, huge strain energy releases suddenly, small moleculars are free from the secondary structure defect, react outburst with gas. Furthermore to extend the discussion of the conventional physical ideas on coal absorb gas, according to the phenomenon of exceeded CBM, the gas molecular has a significant chance existing in a low bond energy of chemical bonds of coal structure.展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating perio...Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating periodic micro- and nanostructures. In the present study, diamond tools with geometrically defined cutting edges were designed for fabricating different types of tailored surface textures using the RUT method. Surface generation mechanisms and machinable structures of the RUT process are analyzed and simulated with a 3D-CAD program. Textured surfaces generated by using a triangular pyramid cutting tip are constructed. Different textural patterns from several micrometers to several tens of micrometers with few burrs were successfully fabricated, which proved that tools with a proper two-rake-face design are capable of removing cutting chips efficiently along a sinusoidal cutting locus in the RUT process. Technical applications of the textured surfaces are also discussed. Wetting properties of textured aluminum surfaces were evaluated by combining the test of surface roughness features. The results show that the real surface area of the textured aluminum surfaces almost doubled by comparing with that of a flat surface, and anisotropic wetting properties were obtained due to the obvious directional textural features.展开更多
Biogenic coalbed gas,how it is generated and the geochemical characteristics of the gas are gaining global attention.The ways coalbed gas is generated,the status of research on the generation mechanism and the methods...Biogenic coalbed gas,how it is generated and the geochemical characteristics of the gas are gaining global attention.The ways coalbed gas is generated,the status of research on the generation mechanism and the methods of differentiating between biogenic gasses are discussed.The generation of biogenic coalbed methane is consistent with anaerobic fermentation theory.Commercial biogenic coalbed gas reservoirs are mainly generated by the process of CO2 reduction.The substrates used by the microbes living in the coal include organic compounds,CO2,H2 and acetate.The production ratio and quantity of biogenic coalbed methane depend on the exposed surface area,the solubility and permeability of the coal and the microbial concentration in the coal seam.It is generally believed that biogenic coalbed gas has a value for δ13C1<-5.5%,C1/C1+>0.95.The H isotope ratio is controlled by both the environment and the generation mechanism:typically δD1<-20%.Biogenic methane formed by CO2 reduction has more δD1 than that formed by acetate fermentation.展开更多
Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the...Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the effects of the different mineral properties on hydrocarbon generation process and mechanism during mineral transformation.In this way,pyrolysis experiments with smectite-octadecanoic acid complexes(Sm-OA and Ex-Sm-OA)were conducted to analyze correlation of mineralogy and pyrolysis behaviors.Based on organicmineral interaction,hydrocarbon generation process was divided into three phases.At 200–300℃,collapse of smectite led to desorption of OM,resulting in high yield of resin and slight increase in saturates.Subsequently,enhanced smectite illitization at 350–450℃was accompanied with large amounts of saturates and a mere gaseous hydrocarbon.Featured by neoformed plagioclase,ankerite,and illite,500C saw plenty of asphaltene and methane-rich gaseous hydrocarbons,revealing cracking reactions of OM.Noteworthy is that saturated and gaseous hydrocarbons in Ex-Sm-OA were considerably more than that in Sm-OA during second and third phases.Quantitative calculation of hydrogen revealed organic hydrogen provided by cross-linking of OM could not balance hydrogen consumed by cracking reactions,but supply of inorganic hydrogen ensured cracking could readily occur and consequently greatly promoted hydrocarbon generation.Further investigating characteristics of mineralogy and pyrolytic products,as well as effects of solid acidity on hydrocarbon generation,we concluded desorption of OM and decarboxylation promoted by Lewis acid were dominated at 200–300C,resulting in lowdegree hydrocarbon generation.While high yield of saturated and gaseous hydrocarbons in second and third phases,together with occurrence of ankerite,indicated predominance of decarboxylation and hydrogenation promoted by Lewis and Brønsted acid,respectively.Variations in organic-mineral interactions indicated(1)the controls of mineral transformation on hydrocarbon generation process and mechanism include desorption,decarboxylation,and hydrogenation reactions;(2)clay minerals acted as reactants evolving together with OM rather than catalysts.These findings are profoundly significant for understanding the hydrocarbon generation mechanisms,organic-inorganic interactions,and carbon cycle.展开更多
The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish metho...The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish methods for assessing recoverable oil and gas resources from in-situ conversion of organic matters in shale.Thermal simulation experiments under in-situ conversion conditions were conducted on Chang 7_(3) shales from the Ordos Basin in a semi-open system with large capacity.The results showed that TOC and R_(o) were the key factors affecting the in-situ transformation potential of shale.The remaining oil and gas yields increased linearly with TOC but inconsistently with R_(o).R_(o) ranged 0.75%—1.25%and 1.05%—2.3%,respectively,corresponding to the main oil generation stage and gas generation stage of shale in-situ transformation.Thus a model to evaluate the remaining oil/gas yield with TOC and R_(o) was obtained.The TOC of shale suitable for in-situ conversion should be greater than 6%,whereas its R_(o) should be less than 1.0%.Shales with 0.75%(R_(o))could obtain the best economic benefit.The results provided a theoretical basis and evaluation methodology for predicting the hydrocarbon resources from in-situ conversion of shale and for the identification of the optimum“sweet spots”.The assessment of the Chang 7_(3) shale in the Ordos Basin indicated that the recoverable oil and gas resources from in-situ conversion of organic matters in shale are substantial,with oil and gas resources reaching approximately 450×10^(8) t and 30×10^(12)m^(3),respectively,from an area of 4.27×10^(4) km^(2).展开更多
The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with Ca SO4 as ox...The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with Ca SO4 as oxygen carrier is investigated in this paper. The thermodynamical analysis indicates that the addition of steam and CO2 into the system can reduce the reaction temperature, at which the concentration of syngas reaches its maximum value.Experimental result in thermogravimetric analyzer and a fixed-bed reactor shows that the mixture sample goes through three stages, drying stage, pyrolysis stage and chemical looping gasification stage, with the temperature for three different gaseous media. The peak fitting and isoconversional methods are used to determine the reaction mechanism of the complex reactions in the chemical looping gasification process. It demonstrates that the gasifying medium(steam or CO2) boosts the chemical looping process by reducing the activation energy in the overall reaction and gasification reactions of coal char. However, the mechanism using steam as the gasifying medium differs from that using CO2. With steam as the gasifying medium, parallel reactions occur in the beginning stage, followed by a limiting stage shifting from a kinetic to a diffusion regime. It is opposite to the reaction mechanism with CO2 as the gasifying medium.展开更多
Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speed...Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speeds. The large eddy simulation (LES) equations and integral formulation of Ffowcs-Williams and Hawings (FW-H) are solved for the cavity with same conditions as experiments. The obtained density-field agrees well with Krishnamurty’s experimental schlieren photograph, which simulates flow-field distributions and the direction of sound wave radiation. The simulated self-sustained oscillation modes inside the cavity agree with Rossiter’s and Heller’s predicated results, which indicate frequency characteristics are obtained. Moreover, the results indicate that the feedback mechanism that new shedding-vortexes induced by propagation of sound wave created by the impingement of the shedding-vortexes in the shear-layer and rear cavity face leads to self-sustained oscillation and high noise inside the cavity. The peak acoustic pressure occurs in the first oscillation mode and the most of sound energy focuses on the low-frequency region.展开更多
As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation– Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental mode...As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation– Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental modelling of shale gas formation, the shale gas generation and accumulation mechanisms as well as their coupling relationships of deep-water shelf shales in Wufeng–Longmaxi Formation of Sichuan Basin were analyzed from petrology, mineralogy, and geochemistry. The high quality shales of Wufeng–Longmaxi Formation in Sichuan Basin are characterized by high thermal evolution, high hydrocarbon generation intensity, good material base, and good roof and floor conditions;the high quality deep-water shelf shale not only has high biogenic silicon content and organic carbon content, but also high porosity coupling. It is concluded that:(1) The shales had good preservation conditions and high retainment of crude oil in the early times, and the shale gas was mainly from cracking of crude oil.(2) The biogenic silicon(opal A) turned into crystal quartz in early times of burial diagenesis, lots of micro-size intergranular pores were produced in the same time;moreover, the biogenic silicon frame had high resistance to compaction, thus it provided the conditions not only for oil charge in the early stage, but also for formation and preservation of nanometer cellular-like pores, and was the key factor enabling the preservation of organic pores.(3) The high quality shale of Wufeng–Longmaxi Formation had high brittleness, strong homogeneity, siliceous intergranular micro-pores and nanometer organic pores, which were conducive to the formation of complicated fissure network connecting the siliceous intergranular nano-pores, and thus high and stable production of shale gas.展开更多
基金supported by the National Major Science and Technology Project of China(Grant Nos.2016ZX05066001-0022017ZX05064-003-001+3 种基金2017ZX05035-02 and 2016ZX05034-001-05)the Innovative Research Group Project of the National Natural Science Foundation of China(Grant Nos.4187213542072151 and 42372144)the Project of Education Department of Liaoning Province(Grant No.LJKMZ20220744)。
文摘Cambrian shales in China and elsewhere contain abundant oil and gas resources.However,due to its deep burial and limited outcrop,there has been relatively little research conducted on it.The Cambrian shale of the Tadong low uplift in the Tarim Basin of western China,specifically the Xidashan-Xishanbulake Formation(Fm.)and overlying Moheershan Fm.provide a case study through the use of organic petrology,mineralogy,organic and elemental geochemistry,with the aim of analyzing and exploring the hydrocarbon generation potential(PG)and organic matter(OM)enrichment mechanisms within these shale formations.The results indicate that:(1)the Cambrian shale of the Tadong low uplift exhibits relatively dispersed OM that consists of vitrinite-like macerals and solid bitumen.These formations have a higher content of quartz and are primarily composed of silica-based lithology;(2)shale samples from the Xidashan-Xishanbulake and Moheershan formations demonstrate high total organic carbon(TOC)and low pyrolytic hydrocarbon content(S_(2))content.The OM is predominantly typeⅠand typeⅡkerogens,indicating a high level of maturation in the wet gas period.These shales have undergone extensive hydrocarbon generation,showing characteristics of relatively poor PG;(3)the sedimentary environments of the Xidashan-Xishanbulake and Moheershan formations in the Tadong low uplift are similar.They were deposited in warm and humid climatic conditions,in oxygen-deficient environments,with stable terrigenous inputs,high paleoproductivity,high paleosalinity,weak water-holding capacity,and no significant hydrothermal activity;and(4)the relationship between TOC and the paleoproductivity parameter(P/Ti)is most significant in the Lower Cambrian Xidashan-Xishanbulake Fm.,whereas correlation with other indicators is not evident.This suggests a productivity-driven OM enrichment model,where input of landderived material was relatively small during the Middle Cambrian,and the ancient water exhibited lower salinity.A comprehensive pattern was formed under the combined control of paleoproductivity and preservation conditions.This study provides valuable guidance for oil and gas exploration in the Tarim Basin.
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金Supported by Major National Basic Research Program of China(973Program,Grant No.2011CB013400-05)PhD Programs Foundation of Ministry of Education of China(Grant No.20110191110005)
文摘The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.
基金Supported by the China National Science and Technology Major Project(2016ZX05047)
文摘The Upper Paleozoic in the north part of Tianhuan depression in the Ordos Basin,NW China has lower hydrocarbon generation intensity and complex gas-water relationship,the main factors controlling the formation of tight sandstone gas and the distribution of tight sandstone gas in the low hydrocarbon generation intensity area are studied.Through two-dimensional physical simulation experiment of hydrocarbon accumulation,analysis of reservoir micro-pore-throat hydrocarbon system and dissection of typical gas reservoirs,the evaluation models of gas injection pressure,reservoir physical property,and gas generation threshold were established to determine the features of tight gas reservoirs in low hydrocarbon intensity area:(1)at the burial depth of less than 3 000 m,the hydrocarbon generation intensity ofis high enough to maintain effective charging;(2)tight sandstone in large scale occurrence is conducive to accumulation of tight gas;(3)differences in reservoir physical property control the distribution of gas pool,for the channel sandstone reservoirs,ones with better physical properties generally concentrate in the middle of sandstone zone and local structural highs;ones with poor physical properties have low gas content generally.Based on the dissection of the gas reservoir in the north Tianhuan depression,the formation of tight gas reservoirs in low hydrocarbon generating intensity area are characterized by"long term continuous charging under hydrocarbon generation pressure,gas accumulation in large scale tight sandstone,pool control by difference in reservoir physical property,and local sweet spot",and the tight gas pools are distributed in discontinuous"sheets"on the plane.This understanding has been proved by expanding exploration of tight sandstone gas in the north Tianhuan depression.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51704188,51702199,61705125,51802181)the State Key Laboratory of Solidification Processing in NWPU(Grant No.SKLSP201809)+2 种基金Natural Science Foundation of Shaanxi Province(Grant No.2019JQ-099)Research Starting Foundation from Shaanxi University of Science and Technology(Grant No.2016GBJ-04)the financial support of China Scholarship Council(Grant No.201808610089)。
文摘In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared alloys in Na Cl solutions have been investigated with the help of nonlinear and linear fitting by Avrami-Erofeev and Arrhenius equations.Combining the microstructure information before and after hydrolysis and thermodynamics fitting results,the hydrolysis H_(2) generation mechanism based on nucleation&growth has been elaborated.The final H_(2) generation capacities of 0La,5La,10La and 15 La alloys are 677,653,641 and 770 m L·g^(-1)H_(2) in 240 min at291 K,respectively.While,the final H_(2) generation capacities of HEBM 0La,5La,10La and 15 La alloys are 632,824,611 and 653 m L·g^(-1)H_(2) in 20 min at 291 K,respectively.The as-cast 15La alloy and HEMB 5La alloy present the best H_(2) production rates and final H_(2) production capacities,especially the HEBM 5La can rapidly achieve high H_(2) generation capacity(670 and 824 m L·g^(-1)H_(2) )at low temperature(291 K)within short time(5 and 20 min).The difference between the H_(2) generation capacities is mainly originated from the initial nucleation rate of Mg(OH)_(2) and the subsequent processes affected by the microstructures and phase compositions of the hydrolysis alloys.Relative low initial nucleation rate and fully growth of Mg(OH)_(2) nucleus are the premise of high H_(2) generation capacity due to the hydrolysis H_(2) generation process consisted by the nucleation,growth and contacting of Mg(OH)_(2) nucleus.To utilization H_(2) by designing solid state H_(2) generators using optimized Mg-based alloys is expected to be a feasible H_(2) generation strategy at the moment.
基金financially supported by the National Natural Science Foundation of China(52071072)the Fundamental Research Funds for the Central Universities(2023GFZD03)+4 种基金the Natural Science Foundation-Steel,the Iron Foundation of Hebei Province(E2022501030)the Key Research and Development Plan of Qinhuangdao City(202302B013)the Liaoning Applied Basic Research Program(2023JH2/101300011)the Basic scientific research project of Liaoning Province Department of Education(LJKZZ20220024)the Shenyang Science and Technology Project(23-407-3-13)。
文摘The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field.
基金Projects(51571112,51171079,51471087) supported by the National Natural Science Foundation of ChinaProject(13KJA430003) supported by Jiangsu Higher Education Institutions of China+1 种基金Project supported by Qing Lan Project,ChinaProject supported by the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions,China
文摘The effects of chloride salts(NaCl,MgCl2and NH4Cl)on the hydrolysis kinetics of MgH2prepared by hydridingcombustion synthesis and mechanical milling(HCS+MM)were discussed.X-ray diffraction(XRD)analyses show that high-purityMgH2was successfully prepared by HCS.Hydrolysis performance test results indicate that the chloride salt added during the millingprocess is favorable to the initial reaction rate and hydrogen generation yield within60min.A MgH2?10%NH4Cl composite exhibitsthe best performance with the hydrogen generation yield of1311mL/g and a conversion rate of85.69%in60min at roomtemperature.It is suggested that the chloride salts not only play as grinding aids in the milling process,but also create fresh surface ofreactive materials,favoring the hydrolysis reaction.
文摘A generation planning model of six main power grids in China is developed to evaluate the potential of advanced power generation technologies into the Chinese power system as CDM (clean development mechanism). It is investigated how delivered coal price, on-grid power price, and environmental protection may influence the potential of advanced thermal power generation as CDM projects. One finding from the baseline analysis is that coal price, on-grid power price, and environmental protection policy have only a small significance to the grid-wide specific CO2 emissions of thermal power generation up to the year 2026, while the best thermal generation mix is influenced largely by environmental protection policy. And it is found that not only the price of CER (certified emission reduction) and the length of crediting period but also on-grid power price and the reduction of air pollutants in the baseline have a significant influence on the potential of the CDM activities.
基金funded by the Physical Geography and Environmental Change Research Group,Department of Environmental Sciences,University of Basel。
文摘A preliminary field-based investigation was undertaken in a small(<10 km^(2))river valley located in the mountainous Jura region of northwest Switzerland.The aims of the work were to assess sediment generation and annual sediment transport rates by tree throw on forested hillslopes,and to document surface hydrology characteristics on four fresh soil mounds associated with recent tree throws over a 24-day monitoring period.For the soil mounds,average sediment recovery ranged from 7.7-28.2 g(dry weight),equivalent to a suspended sediment concentration of 145.2-327.8 g L^(-1),and runoff coefficients ranged from 1.0%-4.2%.Based on a soil bulk density value of 1,044 kg m^(-3),upslope runoff generation areas were denuded by an average 0.14 mm by the end of the 24-day monitoring period,representing an erosion rate equivalent to 2.1 mm yr^(-1).A ca.50 cm high soil mound could therefore feasibly persist for around 200-250 years.For tree throw work,the dimensions of 215 individual tree throws were measured and their locations mapped in 12 separate locations along the river valley representing a cumulative area equivalent to 5.3 ha(av.density,43 per ha).Tree throws generated a total of 20.1 m^(3) of fine-sediment(<2 mm diameter),or the equivalent of 3.8×10^(-4) m^(3) m^(-2).The process of tree throw was originally attributed to two extreme weather events that occurred in west and central Europe in late December 1999.Taking the 18-year period since both storms,this represents an annual sediment transport rate of 2.7×10^(-5) m^(3) m^(-1) yr^(-1).Exploring the relationship with wind on fall direction,65.5%of tree throws(143)generally fell in a downslope direction irrespective of hillslope aspect on which they were located.This infers that individual storms may not have been responsible for the majority of tree throws,but instead,could be associated with root failure.Given the high density of tree throws and their relative maturity(average age 41 years),we hypothesise that once trees attain a certain age in this river valley,their physiognomy(i.e.height,mass and centre of gravity)compromises their ability to remain securely anchored.We tentatively attribute this possibility to the presence of bedrock close to the surface,and to the shallow soil profile overlaying steep hillslopes.
基金Project supported by Special Funds for Scientific and Technological Innovation Projects in Tianjin,China(Grant No.10FDZDGX00400)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.15JCQNJC01100)
文摘We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation(AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-iondoped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo's intensity and efficiency. The theoretical analysis is validated by numerical simulations.
文摘Source and occurrence of Excess Coalbed Methane is a long-term concern research topic in Coal Geology and Structural Geology. Since it is essential to understand the outburst mechanism of coal gas, and to support the coalbed methane development projects as the theoretical basis. We found in the study that, huge imparity is behind the evolutionary trend on molecular structure and the mechanism of influence from different deformation. The thesis demonstrates its probable routes of gas evolution according to distinct deformation mechanisms of coal. In the role of brittle deformation mechanism, a rapidly formed advantage rupture surface along with sliding motion from which has worked on coal. As another result, mechanical energy has transformed into friction and kinetic energy during the process. Kinetic energy increases simultaneously, which brings some results, that the new generated gas molecule. While the chemical structure of coal remains in a steady-state and do not react easily an outburst with gas. Mechanical energy turns into strain energy through its ductile deformation mechanism. The dislocation or lamellar slip made disordered between the constitutional units of aromatic rings and aromatic lamellas, as soon as secondary structural defects created. On another hand, molecular motion accelerates and splits off the small molecular on the side chain, due to the dissociation of aromatic nucleus;CH<sub>4 </sub>gas molecular was generated and placed in the secondary structural defect of coal, along with a great deal of strain energy in non-steady-state. By breaking away the balance maintaining terms, huge strain energy releases suddenly, small moleculars are free from the secondary structure defect, react outburst with gas. Furthermore to extend the discussion of the conventional physical ideas on coal absorb gas, according to the phenomenon of exceeded CBM, the gas molecular has a significant chance existing in a low bond energy of chemical bonds of coal structure.
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
基金Supported by Japan Society for the Promotion of Science(Grant Nos.14J04115,16K17990)
文摘Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating periodic micro- and nanostructures. In the present study, diamond tools with geometrically defined cutting edges were designed for fabricating different types of tailored surface textures using the RUT method. Surface generation mechanisms and machinable structures of the RUT process are analyzed and simulated with a 3D-CAD program. Textured surfaces generated by using a triangular pyramid cutting tip are constructed. Different textural patterns from several micrometers to several tens of micrometers with few burrs were successfully fabricated, which proved that tools with a proper two-rake-face design are capable of removing cutting chips efficiently along a sinusoidal cutting locus in the RUT process. Technical applications of the textured surfaces are also discussed. Wetting properties of textured aluminum surfaces were evaluated by combining the test of surface roughness features. The results show that the real surface area of the textured aluminum surfaces almost doubled by comparing with that of a flat surface, and anisotropic wetting properties were obtained due to the obvious directional textural features.
基金provided by the National Natural Science Foundation of China (No.40730422) is gratefully acknowledged
文摘Biogenic coalbed gas,how it is generated and the geochemical characteristics of the gas are gaining global attention.The ways coalbed gas is generated,the status of research on the generation mechanism and the methods of differentiating between biogenic gasses are discussed.The generation of biogenic coalbed methane is consistent with anaerobic fermentation theory.Commercial biogenic coalbed gas reservoirs are mainly generated by the process of CO2 reduction.The substrates used by the microbes living in the coal include organic compounds,CO2,H2 and acetate.The production ratio and quantity of biogenic coalbed methane depend on the exposed surface area,the solubility and permeability of the coal and the microbial concentration in the coal seam.It is generally believed that biogenic coalbed gas has a value for δ13C1<-5.5%,C1/C1+>0.95.The H isotope ratio is controlled by both the environment and the generation mechanism:typically δD1<-20%.Biogenic methane formed by CO2 reduction has more δD1 than that formed by acetate fermentation.
基金the National Natural Science Foundation of China(Grant Nos.41672115 and 41972126)the National Oil and Gas Special Fund(Grant No.2016ZX05006001-003).
文摘Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the effects of the different mineral properties on hydrocarbon generation process and mechanism during mineral transformation.In this way,pyrolysis experiments with smectite-octadecanoic acid complexes(Sm-OA and Ex-Sm-OA)were conducted to analyze correlation of mineralogy and pyrolysis behaviors.Based on organicmineral interaction,hydrocarbon generation process was divided into three phases.At 200–300℃,collapse of smectite led to desorption of OM,resulting in high yield of resin and slight increase in saturates.Subsequently,enhanced smectite illitization at 350–450℃was accompanied with large amounts of saturates and a mere gaseous hydrocarbon.Featured by neoformed plagioclase,ankerite,and illite,500C saw plenty of asphaltene and methane-rich gaseous hydrocarbons,revealing cracking reactions of OM.Noteworthy is that saturated and gaseous hydrocarbons in Ex-Sm-OA were considerably more than that in Sm-OA during second and third phases.Quantitative calculation of hydrogen revealed organic hydrogen provided by cross-linking of OM could not balance hydrogen consumed by cracking reactions,but supply of inorganic hydrogen ensured cracking could readily occur and consequently greatly promoted hydrocarbon generation.Further investigating characteristics of mineralogy and pyrolytic products,as well as effects of solid acidity on hydrocarbon generation,we concluded desorption of OM and decarboxylation promoted by Lewis acid were dominated at 200–300C,resulting in lowdegree hydrocarbon generation.While high yield of saturated and gaseous hydrocarbons in second and third phases,together with occurrence of ankerite,indicated predominance of decarboxylation and hydrogenation promoted by Lewis and Brønsted acid,respectively.Variations in organic-mineral interactions indicated(1)the controls of mineral transformation on hydrocarbon generation process and mechanism include desorption,decarboxylation,and hydrogenation reactions;(2)clay minerals acted as reactants evolving together with OM rather than catalysts.These findings are profoundly significant for understanding the hydrocarbon generation mechanisms,organic-inorganic interactions,and carbon cycle.
基金supported by PetroChina Co Ltd.(Grant number:2015D-4810-02,2018YCQ03,2021DJ52)National Natural Science Foundation of China(Grant number:42172170)
文摘The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish methods for assessing recoverable oil and gas resources from in-situ conversion of organic matters in shale.Thermal simulation experiments under in-situ conversion conditions were conducted on Chang 7_(3) shales from the Ordos Basin in a semi-open system with large capacity.The results showed that TOC and R_(o) were the key factors affecting the in-situ transformation potential of shale.The remaining oil and gas yields increased linearly with TOC but inconsistently with R_(o).R_(o) ranged 0.75%—1.25%and 1.05%—2.3%,respectively,corresponding to the main oil generation stage and gas generation stage of shale in-situ transformation.Thus a model to evaluate the remaining oil/gas yield with TOC and R_(o) was obtained.The TOC of shale suitable for in-situ conversion should be greater than 6%,whereas its R_(o) should be less than 1.0%.Shales with 0.75%(R_(o))could obtain the best economic benefit.The results provided a theoretical basis and evaluation methodology for predicting the hydrocarbon resources from in-situ conversion of shale and for the identification of the optimum“sweet spots”.The assessment of the Chang 7_(3) shale in the Ordos Basin indicated that the recoverable oil and gas resources from in-situ conversion of organic matters in shale are substantial,with oil and gas resources reaching approximately 450×10^(8) t and 30×10^(12)m^(3),respectively,from an area of 4.27×10^(4) km^(2).
基金Supported by the Research and Development Program of the Korea Institute of Energy Research(KIER)(B4-2431-04)the National Natural Science Foundation of China(21276129,20876079)the Natural Science Funds for Distinguished Young Scholar in Shandong Province(JQ200904)
文摘The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with Ca SO4 as oxygen carrier is investigated in this paper. The thermodynamical analysis indicates that the addition of steam and CO2 into the system can reduce the reaction temperature, at which the concentration of syngas reaches its maximum value.Experimental result in thermogravimetric analyzer and a fixed-bed reactor shows that the mixture sample goes through three stages, drying stage, pyrolysis stage and chemical looping gasification stage, with the temperature for three different gaseous media. The peak fitting and isoconversional methods are used to determine the reaction mechanism of the complex reactions in the chemical looping gasification process. It demonstrates that the gasifying medium(steam or CO2) boosts the chemical looping process by reducing the activation energy in the overall reaction and gasification reactions of coal char. However, the mechanism using steam as the gasifying medium differs from that using CO2. With steam as the gasifying medium, parallel reactions occur in the beginning stage, followed by a limiting stage shifting from a kinetic to a diffusion regime. It is opposite to the reaction mechanism with CO2 as the gasifying medium.
文摘Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speeds. The large eddy simulation (LES) equations and integral formulation of Ffowcs-Williams and Hawings (FW-H) are solved for the cavity with same conditions as experiments. The obtained density-field agrees well with Krishnamurty’s experimental schlieren photograph, which simulates flow-field distributions and the direction of sound wave radiation. The simulated self-sustained oscillation modes inside the cavity agree with Rossiter’s and Heller’s predicated results, which indicate frequency characteristics are obtained. Moreover, the results indicate that the feedback mechanism that new shedding-vortexes induced by propagation of sound wave created by the impingement of the shedding-vortexes in the shear-layer and rear cavity face leads to self-sustained oscillation and high noise inside the cavity. The peak acoustic pressure occurs in the first oscillation mode and the most of sound energy focuses on the low-frequency region.
基金Supported by the China National Science and Technology Major Project(2017ZX05036,2017ZX05036001).
文摘As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation– Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental modelling of shale gas formation, the shale gas generation and accumulation mechanisms as well as their coupling relationships of deep-water shelf shales in Wufeng–Longmaxi Formation of Sichuan Basin were analyzed from petrology, mineralogy, and geochemistry. The high quality shales of Wufeng–Longmaxi Formation in Sichuan Basin are characterized by high thermal evolution, high hydrocarbon generation intensity, good material base, and good roof and floor conditions;the high quality deep-water shelf shale not only has high biogenic silicon content and organic carbon content, but also high porosity coupling. It is concluded that:(1) The shales had good preservation conditions and high retainment of crude oil in the early times, and the shale gas was mainly from cracking of crude oil.(2) The biogenic silicon(opal A) turned into crystal quartz in early times of burial diagenesis, lots of micro-size intergranular pores were produced in the same time;moreover, the biogenic silicon frame had high resistance to compaction, thus it provided the conditions not only for oil charge in the early stage, but also for formation and preservation of nanometer cellular-like pores, and was the key factor enabling the preservation of organic pores.(3) The high quality shale of Wufeng–Longmaxi Formation had high brittleness, strong homogeneity, siliceous intergranular micro-pores and nanometer organic pores, which were conducive to the formation of complicated fissure network connecting the siliceous intergranular nano-pores, and thus high and stable production of shale gas.