The aim of this work is to explain the deuteron-deuteron reactions within palladium lattice by means of the coherence theory of nuclear and condensed matter. The coherence model of condensed matter affirms that within...The aim of this work is to explain the deuteron-deuteron reactions within palladium lattice by means of the coherence theory of nuclear and condensed matter. The coherence model of condensed matter affirms that within a deuteron-loaded palladium lattice there are three different plasmas: electrons, ions and deuterons plasma. Then, according to the loading percentage x = D/Pd, the deuterium ions can take place on the octahedral sites or in the tetrahedral on the (1, 0, 0)-plane. Further, the present work is concentrated on Palladium because, when subjected to thermodynamic stress, this metal has been seen to give results which are interesting from both the theoretical and experimental points of view. Moreover in Pd lattice we can correlate the deuterium loading with D-Pd system phases (i.e. α,β and γ) by means of theory of condensed matter.展开更多
文摘The aim of this work is to explain the deuteron-deuteron reactions within palladium lattice by means of the coherence theory of nuclear and condensed matter. The coherence model of condensed matter affirms that within a deuteron-loaded palladium lattice there are three different plasmas: electrons, ions and deuterons plasma. Then, according to the loading percentage x = D/Pd, the deuterium ions can take place on the octahedral sites or in the tetrahedral on the (1, 0, 0)-plane. Further, the present work is concentrated on Palladium because, when subjected to thermodynamic stress, this metal has been seen to give results which are interesting from both the theoretical and experimental points of view. Moreover in Pd lattice we can correlate the deuterium loading with D-Pd system phases (i.e. α,β and γ) by means of theory of condensed matter.