A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of sol...A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of solid-solution and aging heat treat-ments on the microstructure and mechanical properties of the composite were extensively investigated.Compared with a single-stage sol-id-solution treatment,a two-stage solid-solution treatment(470℃/1 h+480℃/1 h)exhibited a more effective solid-solution strengthen-ing owing to the higher degree of solid-solution and a more uniform microstructure.According to the aging hardness curves of the com-posite,the optimized aging parameter(100℃/22 h)was determined.Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength.The fractography analysis revealed that intergranu-lar cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al-Zn-Mg-Cu composites.Weak regions,such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries,were identified as significant factors limiting the strength enhancement of the composite.Interfacial compounds,including MgO,MgZn2,and Cu5Zn8,reduced the interfacial bonding strength,leading to interfacial debonding.展开更多
The development of simulation model and benchmark work have expanded in the past decade and many models and soft ware are introduced. The leading software "Hearts’ developed by Prof Inoue[1] and several other ha...The development of simulation model and benchmark work have expanded in the past decade and many models and soft ware are introduced. The leading software "Hearts’ developed by Prof Inoue[1] and several other have proved the effectiveness as the pre-production simulation work at many part of heat treatment processes[2-10]. Although, numerous other models and simulation studies dealt with many fundamental factors are reported at many conferences except very few models have not completed three dimensional computation methods, or lack of validation work to evaluate their tools exactly. In this paper, several distortion case studies will be introduced and the needs of fundamental study of distortion and internationally collaborative program on model evaluation and construction of materials database are proposed.展开更多
A Fe61Co10Zr5W4B20 bulk metallic glass (BMG) with a diameter of 2 mm was prepared by using copper mould suction casting. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), micro-hardness and c...A Fe61Co10Zr5W4B20 bulk metallic glass (BMG) with a diameter of 2 mm was prepared by using copper mould suction casting. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), micro-hardness and compression tests were adopted to investigate the structure, thermal stability, especially, the effect of heat treatment on the micro-hardness and compression strength of this BMG. The BMG exhibits micro-hardness of about 1 207 Hv and compression fracture strength of about 1 707.6 MPa. After being annealed below the onset of crystallization temperature, the micro-hardness almost keeps constant. But after being annealed above the peak of crystallization temperature, the micro-hardness increases firstly and then declines gradually with the elongation of annealing time. However, annealed for the same period of time, the micro-hardness will increase with the rise of annealing temperature, while the compression fracture strength will apparently decrease.展开更多
Nanostructured zirconia top coat was deposited by air plasma spray and NiCoCrAlTaY bond coat was deposited on Ni substrate by low pressure plasma spray.Nanostructured and conventional thermal barrier coatings were hea...Nanostructured zirconia top coat was deposited by air plasma spray and NiCoCrAlTaY bond coat was deposited on Ni substrate by low pressure plasma spray.Nanostructured and conventional thermal barrier coatings were heat-treated at temperature varying from 1050 to 1 250oC for 2-20 h.The results show that obvious grain growth was found in both nanostructured and conventional thermal barrier coatings(TBCs)after high temperature heat treatment.Monoclinic/tetragonal phases were transformed into cubic phase in the agglomerated nano-powder after calcination.The cubic phase content increased with increasing calcination temperature.Calcination of the powder made the yttria distributed on the surface of the nanocrystalline particles dissolve in zirconia when grains grew.Different from the phase constituent of the as-sprayed conventional TBC which consisted of diffusionlesstransformed tetragonal,the as-sprayed nanostructured TBC consisted of cubic phase.展开更多
Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess th...Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess the effectiveness of the treatment. Samples were pre-treated in a micro-wave for 5 min followed by metal bath heat treatment at 150, 180, and 210 °C for 2, 4, and 8 h,respectively. Strength properties of metal bath treated wood were decreased with increase temperature and time.Density, modulus of rupture, impact bending, modulus of elasticity were reduced for all treatments. Maximum compressive strength slightly increased at 150 °C for 4 h followed by gradual reduction. The Janka hardness was reduced in the tangential and radial directions. Treatment of the wood at 210 °C for 8 h caused the wood to become brittle and rupture. The contact angle was considerably higher after thermal treatment. The color of the wood became darker with increasing temperature of thermal treatment. Micrographs of the heat-treated samples showed damage to the cell wall with increase in temperature. Metal bath heat treatment of wood was carried out successfully and some strength properties were reduced.展开更多
A new type of heat storage materials combining high temperature molten salts phases change latent heat thermal storage materials, PCM with porous metals sensible heat thermal storage materials was developed. The proce...A new type of heat storage materials combining high temperature molten salts phases change latent heat thermal storage materials, PCM with porous metals sensible heat thermal storage materials was developed. The process was expressed as following: firstly, it is necessary to heat up the molten salts phases change materials to molten; and then the porous metals are put into the molten bath; after being held for 13 h, the composite heat thermal storage materials lumps are taken out of the molten bath and cooled to atmospheric temperature; the last step is to electrodeposit a layer metal coat on the surface of the material lumps. The new type of heat storage material integrates the advantages of both solid sensible heat thermal storage materials and high temperature phases change latent heat thermal storage materials. The metal base heat storage materials enjoy some favorable characteristics such as higher heat charge discharge rate, higher heat storage density and better mechanical strength.展开更多
The microstructure of E911 deposited metal was observed and the effect of heat input and postweld heat treatment on microstructure and impact toughness was investigated. The microstructure consists of tempered martens...The microstructure of E911 deposited metal was observed and the effect of heat input and postweld heat treatment on microstructure and impact toughness was investigated. The microstructure consists of tempered martensite and residual δ- ferrite. The morphology of tempered martensite is columnar and the residual δ-ferrite is polygonal. With the increase in heat input, the width of columnar martensite grain and the size of residual δ-ferrite increased, whereas the volume fraction of residual δ-ferrite varied slightly. The impact toughness decreased as heat input increased. The result reveals that coarsening columnar martensite grain and δ-ferrite have greater effect on impact toughness than volume fraction of residual δ-ferrite. As the time of postweld heat treatment is exceeded 8h, aggregation of M23 C6occurs in some grain boundaries or lath interfaces. The partial aggregation of M23 C6 results in the decrease in impact toughness.展开更多
Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste ...Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM.展开更多
Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the inter...Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the interface microstructures are the research points, which directly influence the mechanical properties. It is, therefore, of vital importance to find a method to improve the interface microstructures. This research focused on the effect of the calcium(Ca) addition in the liquid Mg alloys and the heat treatment on the A390/AM60 interface microstructures of the bi-metallic samples. The testing results showed that, with Ca addition in AM60, owing to two possible reasons, the interface microstructure and the shear strength of the A390/AM60 bi-metallic samples could be improved. The heat treatment could further improve the interface microstructure and the mechanical properties by dissolving β-Mg_(17)Al_(12) into α-Mg and destroying the Mg_2Si layer structure.展开更多
A pseudoplastic metal nanoparticle fluid (PMNF) is used in nanoimprint to fabricate semiconductors and func- tional devices. The evaporation of the solvent and the sintering of the Au PMNF are investigated. The key ...A pseudoplastic metal nanoparticle fluid (PMNF) is used in nanoimprint to fabricate semiconductors and func- tional devices. The evaporation of the solvent and the sintering of the Au PMNF are investigated. The key parameters, which influence the morphology of patterning, such as the radius of metal particles, the concentra- tion of metal particles, the Hamaker constant of the solvent, viscosity of the fluids and the evaporation velocity, are analyzed. Based on a two-sphere sintering model, the equations are derived, which represent the relationships between the relative shrinkage and radius of the metal particles, sintering temperature and time. The optimal parameters for the heat treatment are provided in nanoimprint.展开更多
The composite plate made by explosion welding technology generally has high residual stress and bed plasticity due to the explosion reinforcement. The heat treatment can play a part of eliminating stress and recoverin...The composite plate made by explosion welding technology generally has high residual stress and bed plasticity due to the explosion reinforcement. The heat treatment can play a part of eliminating stress and recovering property.In this study,TA1/Q345 clad plate made by explosive welding was annealed at different temperatures.The microstructure,micro-hardness,and tensile,shear,and bending properties were analyzed after anneal.The result shows that there is fibrous structure in the bonding zone and the plastic deformation is severe,the grain growth and fibrous structure dribbles away with the temperature increasing.Micro-hardness in the interface is bigger than it on the both sides. Tensile and shear strength reduced with the temperature of heat treatment increasing.The propel anneal temperature for TA1/Q345 clad plate is 600展开更多
The Ti substrates of IrO 2 -Ta 2 O 5 coated anodes were treated by solid-solution and aging, stress relieving annealing, and recrystallization annealing, and the coatings were prepared by thermal decomposition of a mi...The Ti substrates of IrO 2 -Ta 2 O 5 coated anodes were treated by solid-solution and aging, stress relieving annealing, and recrystallization annealing, and the coatings were prepared by thermal decomposition of a mixture of H 2 IrCl 6 ·6H 2 O dissolved in hydrochloric acid and TaCl 5 dissolved in alcohol. Scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and accelerated life test (ALT) were employed to study the microstructure and electrochemical properties of the anodes. Compared with the anode without heat treatment, the anodes with heat treatment are of higher electrochemical activity and longer accelerated life; especially, the anode with recrystallization annealing treatment has the best electrochemical properties and the longest accelerated life.展开更多
In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standa...In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standard for tensile test and then heated up to 830°C,kept for 4 h in an electric resistance furnace and then quenched in the mentioned media.Elastic modulus,yield strength,ultimate tensile strength,elongation,and modulus of toughness were determined according to the obtained stress?strain curves.Moreover,the hardness and microstructural evolution were investigated after the heat treatment at different media.The samples quenched in paraffin and CuO-doped paraffin are higher in ultimate tensile strength(1439 and 1306 MPa,respectively)than those quenched in water(1190 MPa)and air(1010 MPa).The highest hardness,with a value of HV 552,belonged to the sample quenched in CuO-doped paraffin.The microstructural studies revealed that the non-tempered steel had a ferrite/pearlite microstructure,while by quenching in water,paraffin and CuO-doped paraffin,ferrite/martensite microstructures were achieved.It is also observed that using the air as quenchant resulted in a three-phase bainite/martensite/ferrite microstructure.展开更多
Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made...Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM⁃LHSU and water was used as heat transfer fluid(HTF).An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM.The study included time⁃dependent visualization of the PCM during the melting and solidification processes.Besides,a thermocouple network was placed inside the heat storage to record the temperature profile during each process.Results showed that better performance could be obtained using composite PCM⁃LHSU for both melting and solidification processes.The melting time of composite PCM⁃LHSU was about 83%faster than that of a simple PCM⁃LHSU,and the percentage decreasing in the solidification time was about 85%due to the provision of metal foam.展开更多
Since the automotive industry has many possible applications for semi-solid metal (SSM)-high-pressure die casting (HPDC) parts, the newly developed heat treatment cycles, as well as the traditional heat treatment cycl...Since the automotive industry has many possible applications for semi-solid metal (SSM)-high-pressure die casting (HPDC) parts, the newly developed heat treatment cycles, as well as the traditional heat treatment cycles, were applied to A356 brake calipers cast using a LK DCC630 HPDC machine.Vickers hardness measurements at a cross section of the brake calipers were performed, indicating that similar values can be obtained when using the significantly shorter heat treatment cycles.Finally, the typical tensile properties that can be obtained for SSM-HPDC A356 brake calipers are compared with those manufactured by gravity die casting.Results indicate that the differences in microstructures (globular or dendritic) do not have a noteworthy effect on the heat treatment response.This implies that the short heat treatment cycles originally developed for globular SSM-HPDC A356 castings can be successfully applied to dendritic liquid A356 castings too.展开更多
In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the hor...In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber,so that it is difficult to experimentally measure the temperature of the transducer and its variation with time,which bring heavy difficulty to the design of the ultrasonic molten metal treatment system.To find a way out,conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method.In modeling of the system,the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation.Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution.Numerical results show that,after about 350 s of working time,temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling.At 240 s,The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2,while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2,which indicates the effectiveness of heat insulation of the asbestos pad.Transient heat transfer film coefficient and its distribution,which are difficult to be measured experimentally are also obtained through numerical simulation.At 240 s,the heat transfer film coefficient in the surface of the transducer ranges from–17.86 to 20.17 W/(m2?K).Compared with the trial and error method based on the test,the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.展开更多
In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are so...In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are solutionizing time,aging temperature,and aging time.The experiments were performed on an universal testing machine according to centre rotatable design matrix.A mathematical model was developed with the main and interactive effects of the parameters considered.The analysis of variance technique was used to check the adequacy of the developed model.The optimum parameters were obtained for maximum tensile strength.Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.展开更多
Computer simulation for materials processing needs a huge database containing a great deal of various physical properties of materials. In order to employ the accumulated large data on materials heat treatment in the ...Computer simulation for materials processing needs a huge database containing a great deal of various physical properties of materials. In order to employ the accumulated large data on materials heat treatment in the past years, it is significant to develop an intelligent database system. Based on the data mining technology for data analysis, an intelligent database web tool system of computer simulation for heat treatment process named as IndBASEweb-HT was built up. The architecture and the arithmetic of this system as well as its application were introduced.展开更多
The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines ...The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper(Cu)current collectors.Specifically,this approach enhances the prevalence of Cu(100)facets within the grooves,effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition.Unlike approaches that modify the entire surface of collectors,our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics.The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42%over 350 cycles at 1 mA cm^(−2).The symmetric cell can cycle stably for 1600 h at 0.5 mA cm^(−2).Furthermore,when integrated with LiFePO4 cathodes,the full-cell configuration demonstrates outstanding capacity retention of 92.39%after 400 cycles at a 1C discharge rate.This study introduces a novel technique for fabricating selective lithiophilic three-dimensional(3D)Cu current collectors,thereby enhancing the performance of Li metal batteries.The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.展开更多
9Cr-1Mo ferritic steels have been used in the conventional power generation plants due to their excellent creep resistance. However, one of the main obstacles in welding 9Cr-1Mo steels is the formation of undesirable ...9Cr-1Mo ferritic steels have been used in the conventional power generation plants due to their excellent creep resistance. However, one of the main obstacles in welding 9Cr-1Mo steels is the formation of undesirable coarse columnar grains in weld metal whieh ean severely compromise the toughness. A new post-weld heat treatment (PWHT) is developed in the present work. Unlike the conventional processes in which the post-weld heat treatment is carried out below Ac1 , the use of temperatures above the Ac1 of 9Cr-1Mo alloy is considered. The new PWHT at a temperature above Ac1 improves the toughness of 9Cr-1Mo weld metals effectively. The improvement in toughness is mainly due to refinement and homogenization of mierostruetures. Key words展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFB3707405)the Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515110525)+1 种基金the National Natural Science Foundation of China(Nos.U22A20114 and 52301200)the Liaoning Revitalization Talents Program,China(No.XLYC2007009)。
文摘A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of solid-solution and aging heat treat-ments on the microstructure and mechanical properties of the composite were extensively investigated.Compared with a single-stage sol-id-solution treatment,a two-stage solid-solution treatment(470℃/1 h+480℃/1 h)exhibited a more effective solid-solution strengthen-ing owing to the higher degree of solid-solution and a more uniform microstructure.According to the aging hardness curves of the com-posite,the optimized aging parameter(100℃/22 h)was determined.Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength.The fractography analysis revealed that intergranu-lar cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al-Zn-Mg-Cu composites.Weak regions,such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries,were identified as significant factors limiting the strength enhancement of the composite.Interfacial compounds,including MgO,MgZn2,and Cu5Zn8,reduced the interfacial bonding strength,leading to interfacial debonding.
文摘The development of simulation model and benchmark work have expanded in the past decade and many models and soft ware are introduced. The leading software "Hearts’ developed by Prof Inoue[1] and several other have proved the effectiveness as the pre-production simulation work at many part of heat treatment processes[2-10]. Although, numerous other models and simulation studies dealt with many fundamental factors are reported at many conferences except very few models have not completed three dimensional computation methods, or lack of validation work to evaluate their tools exactly. In this paper, several distortion case studies will be introduced and the needs of fundamental study of distortion and internationally collaborative program on model evaluation and construction of materials database are proposed.
基金Supported by the National Natural Science Foundation of China (Nos.50971046, 50771037, 50371020)the Combination Projects for Guangdong Province and the Ministry of Education (No.2011B090400485)Doctoral Foundation of Guangdong University of Technology(No.093046)
文摘A Fe61Co10Zr5W4B20 bulk metallic glass (BMG) with a diameter of 2 mm was prepared by using copper mould suction casting. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), micro-hardness and compression tests were adopted to investigate the structure, thermal stability, especially, the effect of heat treatment on the micro-hardness and compression strength of this BMG. The BMG exhibits micro-hardness of about 1 207 Hv and compression fracture strength of about 1 707.6 MPa. After being annealed below the onset of crystallization temperature, the micro-hardness almost keeps constant. But after being annealed above the peak of crystallization temperature, the micro-hardness increases firstly and then declines gradually with the elongation of annealing time. However, annealed for the same period of time, the micro-hardness will increase with the rise of annealing temperature, while the compression fracture strength will apparently decrease.
基金Project(1343-77212)supported by the Innovation Program for Graduate Students of Central South University,China
文摘Nanostructured zirconia top coat was deposited by air plasma spray and NiCoCrAlTaY bond coat was deposited on Ni substrate by low pressure plasma spray.Nanostructured and conventional thermal barrier coatings were heat-treated at temperature varying from 1050 to 1 250oC for 2-20 h.The results show that obvious grain growth was found in both nanostructured and conventional thermal barrier coatings(TBCs)after high temperature heat treatment.Monoclinic/tetragonal phases were transformed into cubic phase in the agglomerated nano-powder after calcination.The cubic phase content increased with increasing calcination temperature.Calcination of the powder made the yttria distributed on the surface of the nanocrystalline particles dissolve in zirconia when grains grew.Different from the phase constituent of the as-sprayed conventional TBC which consisted of diffusionlesstransformed tetragonal,the as-sprayed nanostructured TBC consisted of cubic phase.
基金financially supported by the Special Scientific Research Fund for Public Service Sectors of Forestry(Grant No.201504603)Science and Technology Projects of Fujian Province(2014NZ003)the National Natural Science Foundation of China(Grant Nos.31370560,31170520)
文摘Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess the effectiveness of the treatment. Samples were pre-treated in a micro-wave for 5 min followed by metal bath heat treatment at 150, 180, and 210 °C for 2, 4, and 8 h,respectively. Strength properties of metal bath treated wood were decreased with increase temperature and time.Density, modulus of rupture, impact bending, modulus of elasticity were reduced for all treatments. Maximum compressive strength slightly increased at 150 °C for 4 h followed by gradual reduction. The Janka hardness was reduced in the tangential and radial directions. Treatment of the wood at 210 °C for 8 h caused the wood to become brittle and rupture. The contact angle was considerably higher after thermal treatment. The color of the wood became darker with increasing temperature of thermal treatment. Micrographs of the heat-treated samples showed damage to the cell wall with increase in temperature. Metal bath heat treatment of wood was carried out successfully and some strength properties were reduced.
文摘A new type of heat storage materials combining high temperature molten salts phases change latent heat thermal storage materials, PCM with porous metals sensible heat thermal storage materials was developed. The process was expressed as following: firstly, it is necessary to heat up the molten salts phases change materials to molten; and then the porous metals are put into the molten bath; after being held for 13 h, the composite heat thermal storage materials lumps are taken out of the molten bath and cooled to atmospheric temperature; the last step is to electrodeposit a layer metal coat on the surface of the material lumps. The new type of heat storage material integrates the advantages of both solid sensible heat thermal storage materials and high temperature phases change latent heat thermal storage materials. The metal base heat storage materials enjoy some favorable characteristics such as higher heat charge discharge rate, higher heat storage density and better mechanical strength.
基金Acknowledgements The authors acknowledge gratefully to the financial support for this work from National Natural Science Foundation of China and Baosteel (No. 50734004) and the assistance of Welding Laboratory of Baosteel Group.
文摘The microstructure of E911 deposited metal was observed and the effect of heat input and postweld heat treatment on microstructure and impact toughness was investigated. The microstructure consists of tempered martensite and residual δ- ferrite. The morphology of tempered martensite is columnar and the residual δ-ferrite is polygonal. With the increase in heat input, the width of columnar martensite grain and the size of residual δ-ferrite increased, whereas the volume fraction of residual δ-ferrite varied slightly. The impact toughness decreased as heat input increased. The result reveals that coarsening columnar martensite grain and δ-ferrite have greater effect on impact toughness than volume fraction of residual δ-ferrite. As the time of postweld heat treatment is exceeded 8h, aggregation of M23 C6occurs in some grain boundaries or lath interfaces. The partial aggregation of M23 C6 results in the decrease in impact toughness.
文摘Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM.
基金Funded by the National Natural Science Foundation of China(No.51571080)
文摘Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the interface microstructures are the research points, which directly influence the mechanical properties. It is, therefore, of vital importance to find a method to improve the interface microstructures. This research focused on the effect of the calcium(Ca) addition in the liquid Mg alloys and the heat treatment on the A390/AM60 interface microstructures of the bi-metallic samples. The testing results showed that, with Ca addition in AM60, owing to two possible reasons, the interface microstructure and the shear strength of the A390/AM60 bi-metallic samples could be improved. The heat treatment could further improve the interface microstructure and the mechanical properties by dissolving β-Mg_(17)Al_(12) into α-Mg and destroying the Mg_2Si layer structure.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51175479 and 51475436the Education Department of Henan Province under Grant Nos 13A460725 and 2013GGJS-001
文摘A pseudoplastic metal nanoparticle fluid (PMNF) is used in nanoimprint to fabricate semiconductors and func- tional devices. The evaporation of the solvent and the sintering of the Au PMNF are investigated. The key parameters, which influence the morphology of patterning, such as the radius of metal particles, the concentra- tion of metal particles, the Hamaker constant of the solvent, viscosity of the fluids and the evaporation velocity, are analyzed. Based on a two-sphere sintering model, the equations are derived, which represent the relationships between the relative shrinkage and radius of the metal particles, sintering temperature and time. The optimal parameters for the heat treatment are provided in nanoimprint.
基金supported by National Natural Science Foundation of China(Grant No.51274162)Scientific Research Plan Project of Shaanxi Education Department(Grant No.14JK1539)Collaborative Innovation Project of Shaanxi Province(Grant No.2015XT-39)
文摘The composite plate made by explosion welding technology generally has high residual stress and bed plasticity due to the explosion reinforcement. The heat treatment can play a part of eliminating stress and recovering property.In this study,TA1/Q345 clad plate made by explosive welding was annealed at different temperatures.The microstructure,micro-hardness,and tensile,shear,and bending properties were analyzed after anneal.The result shows that there is fibrous structure in the bonding zone and the plastic deformation is severe,the grain growth and fibrous structure dribbles away with the temperature increasing.Micro-hardness in the interface is bigger than it on the both sides. Tensile and shear strength reduced with the temperature of heat treatment increasing.The propel anneal temperature for TA1/Q345 clad plate is 600
文摘The Ti substrates of IrO 2 -Ta 2 O 5 coated anodes were treated by solid-solution and aging, stress relieving annealing, and recrystallization annealing, and the coatings were prepared by thermal decomposition of a mixture of H 2 IrCl 6 ·6H 2 O dissolved in hydrochloric acid and TaCl 5 dissolved in alcohol. Scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and accelerated life test (ALT) were employed to study the microstructure and electrochemical properties of the anodes. Compared with the anode without heat treatment, the anodes with heat treatment are of higher electrochemical activity and longer accelerated life; especially, the anode with recrystallization annealing treatment has the best electrochemical properties and the longest accelerated life.
文摘In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standard for tensile test and then heated up to 830°C,kept for 4 h in an electric resistance furnace and then quenched in the mentioned media.Elastic modulus,yield strength,ultimate tensile strength,elongation,and modulus of toughness were determined according to the obtained stress?strain curves.Moreover,the hardness and microstructural evolution were investigated after the heat treatment at different media.The samples quenched in paraffin and CuO-doped paraffin are higher in ultimate tensile strength(1439 and 1306 MPa,respectively)than those quenched in water(1190 MPa)and air(1010 MPa).The highest hardness,with a value of HV 552,belonged to the sample quenched in CuO-doped paraffin.The microstructural studies revealed that the non-tempered steel had a ferrite/pearlite microstructure,while by quenching in water,paraffin and CuO-doped paraffin,ferrite/martensite microstructures were achieved.It is also observed that using the air as quenchant resulted in a three-phase bainite/martensite/ferrite microstructure.
文摘Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM⁃LHSU and water was used as heat transfer fluid(HTF).An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM.The study included time⁃dependent visualization of the PCM during the melting and solidification processes.Besides,a thermocouple network was placed inside the heat storage to record the temperature profile during each process.Results showed that better performance could be obtained using composite PCM⁃LHSU for both melting and solidification processes.The melting time of composite PCM⁃LHSU was about 83%faster than that of a simple PCM⁃LHSU,and the percentage decreasing in the solidification time was about 85%due to the provision of metal foam.
文摘Since the automotive industry has many possible applications for semi-solid metal (SSM)-high-pressure die casting (HPDC) parts, the newly developed heat treatment cycles, as well as the traditional heat treatment cycles, were applied to A356 brake calipers cast using a LK DCC630 HPDC machine.Vickers hardness measurements at a cross section of the brake calipers were performed, indicating that similar values can be obtained when using the significantly shorter heat treatment cycles.Finally, the typical tensile properties that can be obtained for SSM-HPDC A356 brake calipers are compared with those manufactured by gravity die casting.Results indicate that the differences in microstructures (globular or dendritic) do not have a noteworthy effect on the heat treatment response.This implies that the short heat treatment cycles originally developed for globular SSM-HPDC A356 castings can be successfully applied to dendritic liquid A356 castings too.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.3093027)
文摘In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber,so that it is difficult to experimentally measure the temperature of the transducer and its variation with time,which bring heavy difficulty to the design of the ultrasonic molten metal treatment system.To find a way out,conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method.In modeling of the system,the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation.Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution.Numerical results show that,after about 350 s of working time,temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling.At 240 s,The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2,while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2,which indicates the effectiveness of heat insulation of the asbestos pad.Transient heat transfer film coefficient and its distribution,which are difficult to be measured experimentally are also obtained through numerical simulation.At 240 s,the heat transfer film coefficient in the surface of the transducer ranges from–17.86 to 20.17 W/(m2?K).Compared with the trial and error method based on the test,the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.
文摘In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are solutionizing time,aging temperature,and aging time.The experiments were performed on an universal testing machine according to centre rotatable design matrix.A mathematical model was developed with the main and interactive effects of the parameters considered.The analysis of variance technique was used to check the adequacy of the developed model.The optimum parameters were obtained for maximum tensile strength.Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.
文摘Computer simulation for materials processing needs a huge database containing a great deal of various physical properties of materials. In order to employ the accumulated large data on materials heat treatment in the past years, it is significant to develop an intelligent database system. Based on the data mining technology for data analysis, an intelligent database web tool system of computer simulation for heat treatment process named as IndBASEweb-HT was built up. The architecture and the arithmetic of this system as well as its application were introduced.
基金supported by the National Natural Science Foundation of China(Grant No.52375438)Shenzhen Science and Technology Programs(Grant No.JCYJ20220818100408019,JSGG20220831101401003,JSGG20210802154007021,KQTD201708101102503570).
文摘The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper(Cu)current collectors.Specifically,this approach enhances the prevalence of Cu(100)facets within the grooves,effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition.Unlike approaches that modify the entire surface of collectors,our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics.The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42%over 350 cycles at 1 mA cm^(−2).The symmetric cell can cycle stably for 1600 h at 0.5 mA cm^(−2).Furthermore,when integrated with LiFePO4 cathodes,the full-cell configuration demonstrates outstanding capacity retention of 92.39%after 400 cycles at a 1C discharge rate.This study introduces a novel technique for fabricating selective lithiophilic three-dimensional(3D)Cu current collectors,thereby enhancing the performance of Li metal batteries.The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.
文摘9Cr-1Mo ferritic steels have been used in the conventional power generation plants due to their excellent creep resistance. However, one of the main obstacles in welding 9Cr-1Mo steels is the formation of undesirable coarse columnar grains in weld metal whieh ean severely compromise the toughness. A new post-weld heat treatment (PWHT) is developed in the present work. Unlike the conventional processes in which the post-weld heat treatment is carried out below Ac1 , the use of temperatures above the Ac1 of 9Cr-1Mo alloy is considered. The new PWHT at a temperature above Ac1 improves the toughness of 9Cr-1Mo weld metals effectively. The improvement in toughness is mainly due to refinement and homogenization of mierostruetures. Key words