The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron...The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The electrochemical properties of LiFePO4/C materials were measured by the constant current charge-discharge method and cyclic voltammetry.The results showed that the LiFePO4/C material prepared by the self-propagating heat method has a typical olivine crystal structure,and the product had fine grains and good electrochemical properties.The optimal sintering temperature is 700℃,the sintering time is 24 h,the particle size of the lithium iron phosphate material is about 300 nm,and the maximum discharge capacity is 121 mAh/g at 0.1 C rate.展开更多
The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to...The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to characterize the properties of LiMnPO4/C. The XRD studies show that the pure olivine phase LiMnPO4 can be obtained at a low temperature of 500 °C. The SEM analyses illustrate that the citric acid used as the chelating reagent and carbon source can restrain the particle size of LiMnPO4/C well. The LiMnPO4/C sample synthesized at 500 °C for 10 h performs the highest initial discharge capacity of 122.6 mA-h/g, retaining 112.4 mA-h/g over 30 cycles at 0.05C rate. The citric acid based sol-gel method is favor to obtain the high electrochemical performance of LiMnPO4/C.展开更多
We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition o...We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition of the materials were characterized by scanning electron microscopy and nitrogen adsorption/desorption,and the results showed that the spherical BiOCl particles were uniformly dispersed on the surface of the Gp,forming a mesoporous BiOCl@Gp composite with a specific surface area of 22.82 m^(2)/g and a pore volume of 0.043 cm3/g.Furthermore,cyclic voltammetry and electrochemical impedance spectroscopy were used to test the electrochemical properties of the composites,and the stability of BiOCl and the high conductivity of Gp were synergistic,the BiOCl@Gp exhibited a specific capacitance of 30.2 F·g^(-1) at a current density of 0.5 A·g^(-1),and the selectivity of the BiOCl@Gp materials for Cl^(-)was significantly higher than that of SO_(4)^(2-),NO_(2)^(-),and HCO_(3)^(-).Therefore,BiOCl@Gp composite electrode materials can be used for the selective adsorption of Cl^(-)in wastewater,in order to achieve efficient wastewater recycling.展开更多
Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applicatio...Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.展开更多
The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early c...The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early contact and contact penetration can occur when the contact conditions are unsuitable,and(2)the method is not available for contact problems involving rigid-nonrigid materials,which can cause numerical instability.This study presents a new hybrid contact approach for the MPM to address these limitations to simulate the soil and structure interactions.The approach combines the advantages of point-point and point-segment contacts to implement contact detection,satisfying the impenetrability condition and smoothing the corner contact problem.The proposed approach is first validated through a disk test on an inclined slope.Then,several typical cases,such as granular collapse,bearing capacity,and deformation of a flexible retaining wall,are simulated to demonstrate the robustness of the proposed approach compared with FEM or analytical solutions.Finally,the proposed method is used to simulate the impact of sand flow on a deformable structure.The results show that the proposed contact approach can well describe the phenomenon of soil-structure interaction problems.展开更多
Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are eff...Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.展开更多
A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning elec...A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning electron microscopy, and elemental analysis show that the Si/SiO_(x)/C material is a secondary particle with a porous micronanostructure, and the presence of nanometer silicon does not affect the carbothermal reduction and carbon coating.Electrochemical test results indicate that the specific capacity and first coulombic efficiency of SiO_(x)/C composite with nanometer silicon can be increased to 1 946.05 mAh/g and 76.49%,respectively.The reversible specific capacity of Si/SiO_(x)/C material blended with graphite is 749.69 mAh/g after 100 cycles at a current density of 0.1 C,and the capacity retention rate is up to 89.03%.Therefore, the composite has excellent electrochemical cycle stability.展开更多
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum a...Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466 nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8 h.展开更多
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calc...The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.展开更多
The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 ...The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 in the raw materials of Li3V2(PO4)3.The XRD analysis shows that the Al-substituted Li3V2(PO4)3 has the same monoclinic structure as the un-substituted Li3V2(PO4)3.The SEM images show that Al-substituted Li3V2(PO4)3 has regular and uniform particles.The electrochemical measurements show that Al-substitution can improve the rate capability of cathode materials.The Li3Al0.05V1.95(PO4)3 sample shows the best high-rate performance.The discharge capacity at 1C rate is 119 mA·h/g with 30th capacity retention rate about 92.97%.The electrode reaction reversibility and electronic conductivity are enhanced,and the charge transfer resistance decreases through Al-substitution.The improved electrochemical performances of Al-substituted Li3V2(PO4)3 cathode materials offer some favorable properties for their commercial application.展开更多
We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment...We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m.展开更多
A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and ac...A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary- type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach.展开更多
A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very t...A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very thin compared with the characteristic length of the structural component, and the nonhomogeneity exists only in the thin layer. Based on these features, by choosing a small parameter I which characterizes the stiffness of the layer relative to the component, and expanding the stresses and displacements on the two sides of the interface according to the parameter lambda, then asymptotically using the continuity conditions of the stresses and displacements on the interface, a decoupling computing process of the coupling control equations of the layer and the structural component is realized. Finally, two examples are given to illustrate the application of the method proposed.展开更多
In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,th...In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials.展开更多
This paper presents the principles and algorithms for simulation of dynamic crack propagation in elastic bodies by the material point method(MPM),from relatively simple two-dimensional cases to full three-dimensional,...This paper presents the principles and algorithms for simulation of dynamic crack propagation in elastic bodies by the material point method(MPM),from relatively simple two-dimensional cases to full three-dimensional,mixed-mode crack propagation.The paper is intended to give a summary of the latest achievements on simulation of three-dimensional dynamic crack propagation,which is essentially an unexplored area.Application of the methodology presented in this paper to several dynamic crack propagation problems has shown that the MPM is a reliable and powerful approach for simulating three-dimensional,mixed-mode crack propagation.展开更多
As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs us...As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.展开更多
Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants ...Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material. Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient to engineering application.展开更多
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
基金Maoming Science and Technology Special Fund Project(Project No.2019018003).Characteristic Innovation Project of Universities in Guangdong Province(Project No.2018KTSCX147).Science and Technology Program of Maoming City(Project No.2020527).
文摘The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The electrochemical properties of LiFePO4/C materials were measured by the constant current charge-discharge method and cyclic voltammetry.The results showed that the LiFePO4/C material prepared by the self-propagating heat method has a typical olivine crystal structure,and the product had fine grains and good electrochemical properties.The optimal sintering temperature is 700℃,the sintering time is 24 h,the particle size of the lithium iron phosphate material is about 300 nm,and the maximum discharge capacity is 121 mAh/g at 0.1 C rate.
基金Project (0991025) supported by Natural Science Foundation of Guangxi, ChinaProject (51164007) supported by the National Natural Science Foundation of ChinaProject (201101ZD008) supported by Educational Commission of Guangxi, China
文摘The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to characterize the properties of LiMnPO4/C. The XRD studies show that the pure olivine phase LiMnPO4 can be obtained at a low temperature of 500 °C. The SEM analyses illustrate that the citric acid used as the chelating reagent and carbon source can restrain the particle size of LiMnPO4/C well. The LiMnPO4/C sample synthesized at 500 °C for 10 h performs the highest initial discharge capacity of 122.6 mA-h/g, retaining 112.4 mA-h/g over 30 cycles at 0.05C rate. The citric acid based sol-gel method is favor to obtain the high electrochemical performance of LiMnPO4/C.
基金Funded by the National Natural Science Foundation of China(No.52072180)the Graduate Research and Innovation Projects of Jiangsu Province(No.KYCX21_3461)。
文摘We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition of the materials were characterized by scanning electron microscopy and nitrogen adsorption/desorption,and the results showed that the spherical BiOCl particles were uniformly dispersed on the surface of the Gp,forming a mesoporous BiOCl@Gp composite with a specific surface area of 22.82 m^(2)/g and a pore volume of 0.043 cm3/g.Furthermore,cyclic voltammetry and electrochemical impedance spectroscopy were used to test the electrochemical properties of the composites,and the stability of BiOCl and the high conductivity of Gp were synergistic,the BiOCl@Gp exhibited a specific capacitance of 30.2 F·g^(-1) at a current density of 0.5 A·g^(-1),and the selectivity of the BiOCl@Gp materials for Cl^(-)was significantly higher than that of SO_(4)^(2-),NO_(2)^(-),and HCO_(3)^(-).Therefore,BiOCl@Gp composite electrode materials can be used for the selective adsorption of Cl^(-)in wastewater,in order to achieve efficient wastewater recycling.
文摘Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.
基金funding support from the National Nature Science Foundation of China(Grant No.52022060)the Key Laboratory of Impact and Safety Engineering(Ningbo University).
文摘The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early contact and contact penetration can occur when the contact conditions are unsuitable,and(2)the method is not available for contact problems involving rigid-nonrigid materials,which can cause numerical instability.This study presents a new hybrid contact approach for the MPM to address these limitations to simulate the soil and structure interactions.The approach combines the advantages of point-point and point-segment contacts to implement contact detection,satisfying the impenetrability condition and smoothing the corner contact problem.The proposed approach is first validated through a disk test on an inclined slope.Then,several typical cases,such as granular collapse,bearing capacity,and deformation of a flexible retaining wall,are simulated to demonstrate the robustness of the proposed approach compared with FEM or analytical solutions.Finally,the proposed method is used to simulate the impact of sand flow on a deformable structure.The results show that the proposed contact approach can well describe the phenomenon of soil-structure interaction problems.
文摘Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.
文摘A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning electron microscopy, and elemental analysis show that the Si/SiO_(x)/C material is a secondary particle with a porous micronanostructure, and the presence of nanometer silicon does not affect the carbothermal reduction and carbon coating.Electrochemical test results indicate that the specific capacity and first coulombic efficiency of SiO_(x)/C composite with nanometer silicon can be increased to 1 946.05 mAh/g and 76.49%,respectively.The reversible specific capacity of Si/SiO_(x)/C material blended with graphite is 749.69 mAh/g after 100 cycles at a current density of 0.1 C,and the capacity retention rate is up to 89.03%.Therefore, the composite has excellent electrochemical cycle stability.
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
文摘Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466 nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8 h.
基金financially supported by the Natural Science Foundation of Guangxi Province, China (No. GKZ0832256)
文摘The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.
基金Project(GuiJiaoRen[2007]71)supported by the Research Funds of the Guangxi Key Laboratory of Environmental Engineering,Protection and Assessment Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning,China
文摘The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 in the raw materials of Li3V2(PO4)3.The XRD analysis shows that the Al-substituted Li3V2(PO4)3 has the same monoclinic structure as the un-substituted Li3V2(PO4)3.The SEM images show that Al-substituted Li3V2(PO4)3 has regular and uniform particles.The electrochemical measurements show that Al-substitution can improve the rate capability of cathode materials.The Li3Al0.05V1.95(PO4)3 sample shows the best high-rate performance.The discharge capacity at 1C rate is 119 mA·h/g with 30th capacity retention rate about 92.97%.The electrode reaction reversibility and electronic conductivity are enhanced,and the charge transfer resistance decreases through Al-substitution.The improved electrochemical performances of Al-substituted Li3V2(PO4)3 cathode materials offer some favorable properties for their commercial application.
基金the Project of the National Natural Science Foudation of China (Grant No.41372114,41340005,41172162,40972083)
文摘We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m.
基金supported by the National Natural Science Foundation of China(Grant Nos.11462006 and 21466012)the Foundation of Jiangxi Provincial Educational Committee+1 种基金China(Grant No.KJLD14041)the Foundation of East China Jiaotong University,China(Grant No.09130020)
文摘A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary- type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach.
文摘A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very thin compared with the characteristic length of the structural component, and the nonhomogeneity exists only in the thin layer. Based on these features, by choosing a small parameter I which characterizes the stiffness of the layer relative to the component, and expanding the stresses and displacements on the two sides of the interface according to the parameter lambda, then asymptotically using the continuity conditions of the stresses and displacements on the interface, a decoupling computing process of the coupling control equations of the layer and the structural component is realized. Finally, two examples are given to illustrate the application of the method proposed.
基金supported by the National Natural Science Foundation of China(Grants 11471262,11202032)the Basic Research Project of National Defense(Grant B 1520132013)supported by the State Key Laboratory of Science and Engineering Computing and Center for high performance computing of Northwestem Polytechnical University
文摘In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials.
文摘This paper presents the principles and algorithms for simulation of dynamic crack propagation in elastic bodies by the material point method(MPM),from relatively simple two-dimensional cases to full three-dimensional,mixed-mode crack propagation.The paper is intended to give a summary of the latest achievements on simulation of three-dimensional dynamic crack propagation,which is essentially an unexplored area.Application of the methodology presented in this paper to several dynamic crack propagation problems has shown that the MPM is a reliable and powerful approach for simulating three-dimensional,mixed-mode crack propagation.
基金supported by Science and Technology Major Project of Shanxi Province,China(No.20201101002)Science and Technology Major Project of China,China(No.2016ZX05043002)+1 种基金National Natural Science Foundation Project of China,China(No.51874319)Science Foundation of China University of Petroleum(Beijing),China(No.2462020QNXZ003)to support part of this work
文摘As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.
基金Project(50825102) supported by the National Natural Science Funds for Distinguished Young Scholar,ChinaProject(2009CB623406) supported by the National Basic Research Program of China
文摘Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material. Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient to engineering application.