The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the ...The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.展开更多
Deburring of high-precision components to their micrometer features without any damage is very important but of great difficulty as the burr-to-functionality size ratio increases. To this end, this paper proposes a ne...Deburring of high-precision components to their micrometer features without any damage is very important but of great difficulty as the burr-to-functionality size ratio increases. To this end, this paper proposes a new deburring method in which the micro burr should be directly removed based on ultraprecision cutting with the designed monocrystalline diamond tool. To determine the feasibility of the proposed method, this paper applies it for deburring of the precision working edge of the servo valve core. Firstly, the monocrystalline diamond tool is carefully designed by covering a variety of topics like rake angle,clearance angle, edge radius. Then, the finite element(FE) simulation was conducted to characterize the deburring performance during the removal of the micro burr produced by the single abrasive grinding. Finally, an innovative self-designed deburring system was introduced and the deburring process was evaluated in terms of cutting forces, temperatures, tool wear mechanisms and deburring quality of the working edges by experiments. The FE simulation results indicate the suitability of the proposed deburring method. Meanwhile, the experimental findings agree well with simulation results and show that ultraprecision cutting with the specialized monocrystalline diamond tool could be successfully used for deburring of servo valve core edge without any damage. This work can provide technical guidance for similar engineering applications, and thus brings an increase to the machining efficiency for the manufacture of precision components.展开更多
The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting ma...The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting machine tool.First,the dynamic model of the machine tool considering the deformations of the cutter head and the lathe head is developed.Then,the mechanical elements are classified into M subsystems and F subsystems according to their properties and connections.The M‐subsystem equations are formulated using the transfer matrix method for multibody systems(MSTMM),and the F‐subsystem equations are analyzed using the finite element method and the Craig-Bampton reduction method.Furthermore,all the subsystems are assembled by combining the restriction equations at connection points among the subsystems to obtain the overall transfer equation of the machine tool system.Finally,the vibration characteristics of the machine tool are evaluated numerically and are validated experimentally.The proposed modeling and analysis method preserves the advantages of the MSTMM,such as high computational efficiency,low computational load,systematic reduction of the overall transfer equation,and generalization of its computational capability to general flexible‐body elements.In addition,this study provides theoretical insights and guidance for the design of ultra‐precision machine tools.展开更多
Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method(FEM)cutting simulation.In this study,a new ...Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method(FEM)cutting simulation.In this study,a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting;estimate the stress distributions on the rake,edge,and clearance faces of the tool;and predict the stagnation point location and the minimum cutting thickness.The friction modeling is established by determining the distribution of normal and shear stress.Then,it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness.The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation.Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling.Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface,thereby validating the modeling method of the minimum cutting thickness in micro cutting.展开更多
Based on the “principle of minimum energy”, the basic characteristics of non-free cutting are studied; the phenomenon and the nature of chip-ejection interference commonly existing in the cutting process of modern c...Based on the “principle of minimum energy”, the basic characteristics of non-free cutting are studied; the phenomenon and the nature of chip-ejection interference commonly existing in the cutting process of modern cutting tools are explored. A “synthesis method of elementary cutting tools” is suggested for modeling the cutting process of modern complex cutting tools. The general equation governing the chip-ejection motion is deduced. Real examples of non-free cutting are analyzed and the theoretically predicted results are supported by the experimental data or facts. The sufficient and necessary conditions for eliminating chip-ejection interference and for realizing free cutting are given; the idea and the technical approach of “the principle of free cutting” are also discussed, and a feasible way for improving or optimizing the cutting performance of modern cutting tools is, therefore, found.展开更多
The Taguchi method, based on an orthogonal arrangement (L9, 33), the vari-ance analysis, the signal-to-noise ratios and the response surface methodol-ogy have been used to optimize maximum flank wear (VBmax) and surfa...The Taguchi method, based on an orthogonal arrangement (L9, 33), the vari-ance analysis, the signal-to-noise ratios and the response surface methodol-ogy have been used to optimize maximum flank wear (VBmax) and surface roughness (Ra) of the cutting tool when turning a hardened steel AISI D2 (65 HRC) with PVD—TiAlN coated WC insert upon dry environment. By em-ploying regression models;cutting speed, cutting depth and feed rate, which optimize maximum flank wear and surface roughness were validated. Results of relation signal-to-noise ratios, showed that with cutting speed of 200 m/min, cutting depth of 0.2 mm and feed rate of 0.20 mm/rev, Ra is opti-mized. With cutting speed of 150 m/min, cutting depth of 0.4 mm and feed rate of 0.3 mm/rev, VBmax is optimized. Through the variance analysis it was concluded that the depth of cut was the main parameter that affected on the surface roughness;whereas, the feed rate was the most influential parameter on the flank wear. Confirmation test results showed that the Taguchi method was very successful in the optimization of machining parameters for mini-mum surface roughness and flank wear in the turning of the D2 steel.展开更多
Edge preparation can remove cutting edge defects,such as burrs,chippings,and grinding marks,generated in the grinding process and improve the cutting performance and service life of tools.Various edge preparation meth...Edge preparation can remove cutting edge defects,such as burrs,chippings,and grinding marks,generated in the grinding process and improve the cutting performance and service life of tools.Various edge preparation methods have been proposed for different tool matrix materials,geometries,and application requirements.This study presents a scientific and systematic review of the development of tool edge preparation technology and provides ideas for its future development.First,typical edge characterization methods,which associate the microgeometric characteristics of the cutting edge with cutting performance,are briefly introduced.Then,edge preparation methods for cutting tools,in which materials at the cutting edge area are removed to decrease defects and obtain a suitable microgeometry of the cutting edge for machining,are discussed.New edge preparation methods are explored on the basis of existing processing technologies,and the principles,advantages,and limitations of these methods are systematically summarized and analyzed.Edge preparation methods are classified into two categories:mechanical processing methods and nontraditional processing methods.These methods are compared from the aspects of edge consistency,surface quality,efficiency,processing difficulty,machining cost,and general availability.In this manner,a more intuitive understanding of the characteristics can be gained.Finally,the future development direction of tool edge preparation technology is prospected.展开更多
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
文摘The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.
基金supported by the National Key R&D Program of China(Grant No.2018YFB2002200)
文摘Deburring of high-precision components to their micrometer features without any damage is very important but of great difficulty as the burr-to-functionality size ratio increases. To this end, this paper proposes a new deburring method in which the micro burr should be directly removed based on ultraprecision cutting with the designed monocrystalline diamond tool. To determine the feasibility of the proposed method, this paper applies it for deburring of the precision working edge of the servo valve core. Firstly, the monocrystalline diamond tool is carefully designed by covering a variety of topics like rake angle,clearance angle, edge radius. Then, the finite element(FE) simulation was conducted to characterize the deburring performance during the removal of the micro burr produced by the single abrasive grinding. Finally, an innovative self-designed deburring system was introduced and the deburring process was evaluated in terms of cutting forces, temperatures, tool wear mechanisms and deburring quality of the working edges by experiments. The FE simulation results indicate the suitability of the proposed deburring method. Meanwhile, the experimental findings agree well with simulation results and show that ultraprecision cutting with the specialized monocrystalline diamond tool could be successfully used for deburring of servo valve core edge without any damage. This work can provide technical guidance for similar engineering applications, and thus brings an increase to the machining efficiency for the manufacture of precision components.
基金National Natural Science Foundation of China,Grant/Award Number:52105129Science Challenge Project,Grant/Award Number:JZDD2016006–0102Boya Postdoctoral Fellowship of Peking University。
文摘The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting machine tool.First,the dynamic model of the machine tool considering the deformations of the cutter head and the lathe head is developed.Then,the mechanical elements are classified into M subsystems and F subsystems according to their properties and connections.The M‐subsystem equations are formulated using the transfer matrix method for multibody systems(MSTMM),and the F‐subsystem equations are analyzed using the finite element method and the Craig-Bampton reduction method.Furthermore,all the subsystems are assembled by combining the restriction equations at connection points among the subsystems to obtain the overall transfer equation of the machine tool system.Finally,the vibration characteristics of the machine tool are evaluated numerically and are validated experimentally.The proposed modeling and analysis method preserves the advantages of the MSTMM,such as high computational efficiency,low computational load,systematic reduction of the overall transfer equation,and generalization of its computational capability to general flexible‐body elements.In addition,this study provides theoretical insights and guidance for the design of ultra‐precision machine tools.
文摘Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method(FEM)cutting simulation.In this study,a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting;estimate the stress distributions on the rake,edge,and clearance faces of the tool;and predict the stagnation point location and the minimum cutting thickness.The friction modeling is established by determining the distribution of normal and shear stress.Then,it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness.The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation.Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling.Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface,thereby validating the modeling method of the minimum cutting thickness in micro cutting.
基金Project supported by the National Natural Science Foundation of China (Grant No. 59675058).
文摘Based on the “principle of minimum energy”, the basic characteristics of non-free cutting are studied; the phenomenon and the nature of chip-ejection interference commonly existing in the cutting process of modern cutting tools are explored. A “synthesis method of elementary cutting tools” is suggested for modeling the cutting process of modern complex cutting tools. The general equation governing the chip-ejection motion is deduced. Real examples of non-free cutting are analyzed and the theoretically predicted results are supported by the experimental data or facts. The sufficient and necessary conditions for eliminating chip-ejection interference and for realizing free cutting are given; the idea and the technical approach of “the principle of free cutting” are also discussed, and a feasible way for improving or optimizing the cutting performance of modern cutting tools is, therefore, found.
文摘The Taguchi method, based on an orthogonal arrangement (L9, 33), the vari-ance analysis, the signal-to-noise ratios and the response surface methodol-ogy have been used to optimize maximum flank wear (VBmax) and surface roughness (Ra) of the cutting tool when turning a hardened steel AISI D2 (65 HRC) with PVD—TiAlN coated WC insert upon dry environment. By em-ploying regression models;cutting speed, cutting depth and feed rate, which optimize maximum flank wear and surface roughness were validated. Results of relation signal-to-noise ratios, showed that with cutting speed of 200 m/min, cutting depth of 0.2 mm and feed rate of 0.20 mm/rev, Ra is opti-mized. With cutting speed of 150 m/min, cutting depth of 0.4 mm and feed rate of 0.3 mm/rev, VBmax is optimized. Through the variance analysis it was concluded that the depth of cut was the main parameter that affected on the surface roughness;whereas, the feed rate was the most influential parameter on the flank wear. Confirmation test results showed that the Taguchi method was very successful in the optimization of machining parameters for mini-mum surface roughness and flank wear in the turning of the D2 steel.
基金the National Natural Science Foundation of China(Grant No.52175441).
文摘Edge preparation can remove cutting edge defects,such as burrs,chippings,and grinding marks,generated in the grinding process and improve the cutting performance and service life of tools.Various edge preparation methods have been proposed for different tool matrix materials,geometries,and application requirements.This study presents a scientific and systematic review of the development of tool edge preparation technology and provides ideas for its future development.First,typical edge characterization methods,which associate the microgeometric characteristics of the cutting edge with cutting performance,are briefly introduced.Then,edge preparation methods for cutting tools,in which materials at the cutting edge area are removed to decrease defects and obtain a suitable microgeometry of the cutting edge for machining,are discussed.New edge preparation methods are explored on the basis of existing processing technologies,and the principles,advantages,and limitations of these methods are systematically summarized and analyzed.Edge preparation methods are classified into two categories:mechanical processing methods and nontraditional processing methods.These methods are compared from the aspects of edge consistency,surface quality,efficiency,processing difficulty,machining cost,and general availability.In this manner,a more intuitive understanding of the characteristics can be gained.Finally,the future development direction of tool edge preparation technology is prospected.