This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign...In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.展开更多
This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative contro...This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance.展开更多
Objective:To determine the most common mistakes made during the use of a metered-dose inhaler(MDI),and the effect of the repeated trainings performed with demonstration method by providing one-to-one feedback on these...Objective:To determine the most common mistakes made during the use of a metered-dose inhaler(MDI),and the effect of the repeated trainings performed with demonstration method by providing one-to-one feedback on these mistakes.Methods:This is a quasi-experimental study with a control group.A total of 100 chronic obstructive pulmonary disease(COPD)patients(50 in the control group and 50 in the experimental group)were included in the research.“Patient Information Form(PIF)”(to determine the descriptive characteristics of patients)through the face-to-face interview method,using“MDI Skill Assessment Form”(MDISAF)(it is composed of 10 skill steps about the use of MDI)through observation method was used.Patients in both the groups were asked to use MDI and their abilities regarding use of MDI were assessed.Then in the intervention group,usage of MDI was explained by a nurse via demonstration and placebo MDI.Trainings were repeated on days 1,3,and 5 as from hospitalization of the patient.In the intervention group,three methods were used in this study:“face-to-face training,”“one-to-one,”and“with feedbacks and repeated.”Routine training regarding use of MDI was given by the nurses in the clinic to patients in the control group.The use of an MDI was assessed using MDISAF before training and after the training on the first,third and fifth days of hospitalization.On the seventh day,the last measurement was performed.Percentage,chi square,and mean were used to assess the data.Results:After repetitive training with one-to-one feedback,several differences between the groups in favor of the experimental group were found in 7 of the 10 skill levels of the MDI.There was a significant difference after“training”between the groups in the third,fourth,fifth,sixth,seventh,eighth and ninth MDI steps in posttest measurement(P<0.05).Evaluating the skills of the groups to use MDI from pretest to posttest,it was determined that while the intervention group made less mistakes in steps in which mistakes were made mostly,the control group continued to make mistakes.Conclusions:Inhaler technique intervention with repeated,face to face,and one-to-one feedback trainings can significantly enhance the MDI techniques in COPD patients.The patients in the intervention group made less mistakes during MDI application and their application skills improved.It may be asser ted that the training provided to the intervention group was effective for using the device correctly,while the training provided in the clinic for the control group was inadequate.展开更多
The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S)...The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism.展开更多
Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is propos...Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.展开更多
A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to de...A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged Ito equation. Finally, numerical examples are used to illustrate the proposed control method, and the numerical results are confirmed by Monte Carlo simulation .展开更多
Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field ad...Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.展开更多
The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly ...The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.展开更多
The study of controlling high-current proton beam halo-chaos has become a key concerned issue for manyimportant applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Partic...The study of controlling high-current proton beam halo-chaos has become a key concerned issue for manyimportant applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle incell simulation results show that the method is very effective and has some advantages for high-current beam experimentsand engineering.展开更多
For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the las...The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the laser field isobtained.The mean,normalized variance and skewness of the steady-state laser intensity are calculated.It is found thatthe time-delayed feedback control can suppress the intensity fluctuation of the laser system.The numerical simulationsare in good agreement with the approximate analytic results.展开更多
Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-pa...Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.展开更多
In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is deriv...In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.展开更多
Control of the spatiotemporal patterns near the codimension-three Turing–Hopf–Wave bifurcations is studied by using time-delayed feedback in a three-variable Brusselator model. Linear stability analysis of the syste...Control of the spatiotemporal patterns near the codimension-three Turing–Hopf–Wave bifurcations is studied by using time-delayed feedback in a three-variable Brusselator model. Linear stability analysis of the system shows that the competition among the Turing-, Hopf- and Wave-modes, the wavenumber, and the oscillation frequency of patterns can be controlled by changing the feedback parameters. The role of the feedback intensity Pu played on controlling the pattern competition is equivalent to that of Pw, but opposite to that of Pv. The role of the feedback intensity Pu played on controlling the wavenumber and oscillation frequency of patterns is equivalent to that of Pv, but opposite to that of Pw. When the intensities of feedback are applied equally, changing the delayed time could not alter the competition among these modes, however, it can control the oscillation frequency of patterns. The analytical results are verified by two-dimensional (2D) numerical simulations.展开更多
The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The fi...The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The first optimization criterion is given,and the results show that the introduction of time-delayed feedback control(TDFC) is beneficial to improving the vibration suppression at the anti-resonance band. When a single TDVA is used, the anti-resonance is located at a specific frequency by the optimum design of TDFC parameters. Then, in order to obtain low-frequency and broad bands for vibration suppression, multiple TDVAs are uniformly distributed on a continuous beam,and the relationship between the dynamic responses and the TDFC parameters is investigated. The obtained relationship shows that the TDVA has a significant regulatory effect on the vibration behavior of the continuous beam. The effects of the number of TDVAs and the nonlinearity on the bandgap variation are discussed. As the multiple TDVAs are applied, according to the different requirements on the location and bandwidth of the effective vibration suppression band, the optimization criteria for the TDFC parameters are given, which provides guidance for the applications of TDVAs in practical projects such as bridge and aerospace.展开更多
An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear bu...An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear building structure under horizontal ground acceleration excitation is formulated and converted into that of completely observable linear structure by using separation principle. The time-delayed control forces are approximately expressed in terms of control forces without time delay. The control system is then governed by Itoe stochastic differential equations for the conditional means of system states and then transformed into those for the conditional means of modal energies by using the stochastic averaging method for quasi-Hamiltonian systems. The control law is assumed to be modal velocity feedback control with time delay and the unknown control gains are determined by the modal performance indices. A three-storey building structure is taken as example to illustrate the proposal method and the numerical results are confirmed by using Monte Carlo simulation.展开更多
The phenomenon of stochastic resonance of a bistable system subjected to linear time-delayed feedback loops driven by multiplieative Gaussian coloured noise and additive Gaussian white noise is investigated. Firstly, ...The phenomenon of stochastic resonance of a bistable system subjected to linear time-delayed feedback loops driven by multiplieative Gaussian coloured noise and additive Gaussian white noise is investigated. Firstly, the analytic expression of the quasi-steady distribution function Ps (x, t) is derived by applying the unified coloured noise approximation and the Novikov Theorem; Secondly, the expression of the signal-to-noise ratio (SNR) is obtained in the adiabatic limit to quantify the stochastic resonance. Finally, tile effects of the linear coefficient a, the nonlinear coefficient b, the linear time-delayed feedback coefficient c and the delay time r on Ps(x,t) and SNR^± are discussed. It is found that the effects of the linear coefficient and the nonlinear coefficient, the positive linear time-delayed feedback coefficient and the negative linear time-delayed feedback coefficient, the positive delayed time and the negative delayed time on Ps(x,t) and SNR^± are different, respectively. This discussion would be helpful to the study of the system reliability and controlling stochastic resonance.展开更多
In order to solve the problem of reliability modeling and the analysis of complex systems with multiple closed-loop feedbacks,a new reliability analysis method for repairable systems with multiple closed-loop feedback...In order to solve the problem of reliability modeling and the analysis of complex systems with multiple closed-loop feedbacks,a new reliability analysis method for repairable systems with multiple closed-loop feedbacks is proposed based on the goal-oriented(GO)methodology.Firstly,the basic theories and advantages of GO method are introduced.Secondly,a type-24B multiple closed-loop feedback structure operator is proposed through GO method with its operation formula given,which expands the types of GO method operators and the application scope of their reliability analysis.Finally,taking a certain type of diesel engine fuel supply system an example,the quantitative and qualitative analysis is carried out through GO method,Monte Carlo simulation as well as FTA respectively.The availability results verify the availability of the proposed type-24B operator in the reliability analysis of multiple closed-loop feedback systems.The qualitative analysis results indicate the accuracy and usability of the GO method as a qualitative analysis method.展开更多
A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes wi...A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes with the angle between the optic axis of the birefringence element and laser original polarization. The phase difference is highly sensitive to the relative position of the optic axis and the laser original polarization. This method is used to highly precisely determine the optic axis azimuth, and is able to distinguish between the fast axis and the slow axis of the birefringence element. Theoretical analysis and experimental results are both demonstrated.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金Project supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12172323,12132013+1 种基金12332003)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.
基金support from the National Natural Science Foundation of China(No.61773395)。
文摘This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance.
文摘Objective:To determine the most common mistakes made during the use of a metered-dose inhaler(MDI),and the effect of the repeated trainings performed with demonstration method by providing one-to-one feedback on these mistakes.Methods:This is a quasi-experimental study with a control group.A total of 100 chronic obstructive pulmonary disease(COPD)patients(50 in the control group and 50 in the experimental group)were included in the research.“Patient Information Form(PIF)”(to determine the descriptive characteristics of patients)through the face-to-face interview method,using“MDI Skill Assessment Form”(MDISAF)(it is composed of 10 skill steps about the use of MDI)through observation method was used.Patients in both the groups were asked to use MDI and their abilities regarding use of MDI were assessed.Then in the intervention group,usage of MDI was explained by a nurse via demonstration and placebo MDI.Trainings were repeated on days 1,3,and 5 as from hospitalization of the patient.In the intervention group,three methods were used in this study:“face-to-face training,”“one-to-one,”and“with feedbacks and repeated.”Routine training regarding use of MDI was given by the nurses in the clinic to patients in the control group.The use of an MDI was assessed using MDISAF before training and after the training on the first,third and fifth days of hospitalization.On the seventh day,the last measurement was performed.Percentage,chi square,and mean were used to assess the data.Results:After repetitive training with one-to-one feedback,several differences between the groups in favor of the experimental group were found in 7 of the 10 skill levels of the MDI.There was a significant difference after“training”between the groups in the third,fourth,fifth,sixth,seventh,eighth and ninth MDI steps in posttest measurement(P<0.05).Evaluating the skills of the groups to use MDI from pretest to posttest,it was determined that while the intervention group made less mistakes in steps in which mistakes were made mostly,the control group continued to make mistakes.Conclusions:Inhaler technique intervention with repeated,face to face,and one-to-one feedback trainings can significantly enhance the MDI techniques in COPD patients.The patients in the intervention group made less mistakes during MDI application and their application skills improved.It may be asser ted that the training provided to the intervention group was effective for using the device correctly,while the training provided in the clinic for the control group was inadequate.
基金Supported by the Aeronautical Science Foundation of China(20111453012)the National Defense Pre-Research Foundation of China(9140A13040111HK0329)~~
文摘The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism.
基金the National Natural Science Foundation of China (Grants 11572224 and 11772229).
文摘Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.
基金the National Natural Science Foundation of China (10772159)Specialized Research Fund for the Doctoral Program of Higher Education of China (20060335125)
文摘A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged Ito equation. Finally, numerical examples are used to illustrate the proposed control method, and the numerical results are confirmed by Monte Carlo simulation .
基金The project supported by the Key Projects of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grants Nos. 70371068 and 10247005
文摘Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.
基金Project(KYLX15_0256)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(SV2015-KF-01)supported by the Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures,ChinaProject(XZA15003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10247005,70071047,and 19875080
文摘The study of controlling high-current proton beam halo-chaos has become a key concerned issue for manyimportant applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle incell simulation results show that the method is very effective and has some advantages for high-current beam experimentsand engineering.
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
文摘The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the laser field isobtained.The mean,normalized variance and skewness of the steady-state laser intensity are calculated.It is found thatthe time-delayed feedback control can suppress the intensity fluctuation of the laser system.The numerical simulationsare in good agreement with the approximate analytic results.
基金Project supported by the National Natural Science Foundation of China(Grant No.60551002)the Natural Science Foundation of Hunan Province,China(Grant No.2018JJ3680).
文摘Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.
基金Project supported by the National Natural Science Foundation of China(Nos.11971303 and 11871330)。
文摘In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.
基金Project supported by the National Nature Science Foundation of China(Grant No.11205044)the Fundamental Research Funds for the Central Universities(Grant No.10ML40)
文摘Control of the spatiotemporal patterns near the codimension-three Turing–Hopf–Wave bifurcations is studied by using time-delayed feedback in a three-variable Brusselator model. Linear stability analysis of the system shows that the competition among the Turing-, Hopf- and Wave-modes, the wavenumber, and the oscillation frequency of patterns can be controlled by changing the feedback parameters. The role of the feedback intensity Pu played on controlling the pattern competition is equivalent to that of Pw, but opposite to that of Pv. The role of the feedback intensity Pu played on controlling the wavenumber and oscillation frequency of patterns is equivalent to that of Pv, but opposite to that of Pw. When the intensities of feedback are applied equally, changing the delayed time could not alter the competition among these modes, however, it can control the oscillation frequency of patterns. The analytical results are verified by two-dimensional (2D) numerical simulations.
基金Project supported by the National Natural Science Foundation of China (Nos. 12122208, 11972254,and 11932015)。
文摘The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The first optimization criterion is given,and the results show that the introduction of time-delayed feedback control(TDFC) is beneficial to improving the vibration suppression at the anti-resonance band. When a single TDVA is used, the anti-resonance is located at a specific frequency by the optimum design of TDFC parameters. Then, in order to obtain low-frequency and broad bands for vibration suppression, multiple TDVAs are uniformly distributed on a continuous beam,and the relationship between the dynamic responses and the TDFC parameters is investigated. The obtained relationship shows that the TDVA has a significant regulatory effect on the vibration behavior of the continuous beam. The effects of the number of TDVAs and the nonlinearity on the bandgap variation are discussed. As the multiple TDVAs are applied, according to the different requirements on the location and bandwidth of the effective vibration suppression band, the optimization criteria for the TDFC parameters are given, which provides guidance for the applications of TDVAs in practical projects such as bridge and aerospace.
基金the National Natural Science Foundation of China (Nos. 10332030 and 10772159)the Research Fund for theDoctoral Program of Higher Education of China (No. 20060335125)
文摘An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear building structure under horizontal ground acceleration excitation is formulated and converted into that of completely observable linear structure by using separation principle. The time-delayed control forces are approximately expressed in terms of control forces without time delay. The control system is then governed by Itoe stochastic differential equations for the conditional means of system states and then transformed into those for the conditional means of modal energies by using the stochastic averaging method for quasi-Hamiltonian systems. The control law is assumed to be modal velocity feedback control with time delay and the unknown control gains are determined by the modal performance indices. A three-storey building structure is taken as example to illustrate the proposal method and the numerical results are confirmed by using Monte Carlo simulation.
基金supported by National Natural Science Foundation of China under Grant Nos.10472091 and 10332030
文摘The phenomenon of stochastic resonance of a bistable system subjected to linear time-delayed feedback loops driven by multiplieative Gaussian coloured noise and additive Gaussian white noise is investigated. Firstly, the analytic expression of the quasi-steady distribution function Ps (x, t) is derived by applying the unified coloured noise approximation and the Novikov Theorem; Secondly, the expression of the signal-to-noise ratio (SNR) is obtained in the adiabatic limit to quantify the stochastic resonance. Finally, tile effects of the linear coefficient a, the nonlinear coefficient b, the linear time-delayed feedback coefficient c and the delay time r on Ps(x,t) and SNR^± are discussed. It is found that the effects of the linear coefficient and the nonlinear coefficient, the positive linear time-delayed feedback coefficient and the negative linear time-delayed feedback coefficient, the positive delayed time and the negative delayed time on Ps(x,t) and SNR^± are different, respectively. This discussion would be helpful to the study of the system reliability and controlling stochastic resonance.
基金supported by the Special Support Project of SASTIND and Technologyof SASTIND(No.JSZL2019XXXB001)。
文摘In order to solve the problem of reliability modeling and the analysis of complex systems with multiple closed-loop feedbacks,a new reliability analysis method for repairable systems with multiple closed-loop feedbacks is proposed based on the goal-oriented(GO)methodology.Firstly,the basic theories and advantages of GO method are introduced.Secondly,a type-24B multiple closed-loop feedback structure operator is proposed through GO method with its operation formula given,which expands the types of GO method operators and the application scope of their reliability analysis.Finally,taking a certain type of diesel engine fuel supply system an example,the quantitative and qualitative analysis is carried out through GO method,Monte Carlo simulation as well as FTA respectively.The availability results verify the availability of the proposed type-24B operator in the reliability analysis of multiple closed-loop feedback systems.The qualitative analysis results indicate the accuracy and usability of the GO method as a qualitative analysis method.
基金Project supported by the Natural Science Foundation of Beijing,China(Grant No.3091002)
文摘A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes with the angle between the optic axis of the birefringence element and laser original polarization. The phase difference is highly sensitive to the relative position of the optic axis and the laser original polarization. This method is used to highly precisely determine the optic axis azimuth, and is able to distinguish between the fast axis and the slow axis of the birefringence element. Theoretical analysis and experimental results are both demonstrated.