Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the recipr...Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued.展开更多
The Qinling Mountains has always been regarded as an essential dividing line between the warm temperate zone and the subtropical zone in eastern China and plays a vital role in the geoecological pattern of China.Howev...The Qinling Mountains has always been regarded as an essential dividing line between the warm temperate zone and the subtropical zone in eastern China and plays a vital role in the geoecological pattern of China.However,there is controversy about the specific location of this geographical boundary in the academic community.As a product of the combined effects of zonal and non-zonal factors,the mountain altitudinal belts(MABs)can reflect both the horizontal zonality and the vertical zonality of vegetation distribution.Using the MAB information,we can not only profoundly understand the complex mountain system of QinlingDaba Mountains but can also judge its nature as a geographical boundary more scientifically.Therefore,based on the comparative analysis of basal belt,dominant belt characteristics and belt structure characteristics of the MABs in Qinling-Daba Mountains,subtropical and temperate mountains,this paper analyzed the MAB differences and similarities among Qinling-Daba Mountains,subtropical and temperate typical mountains,to reveal the vegetation distribution characteristics in the north-south transitional zone.The results show that:(1)The MABs of the southern part of QinlingDaba Mountains(southern slope of the Daba Mountains)are the same or similar to those of the Subtropical Mountains,and the MABs of the northern part of Qinling-Daba Mountains(northern slope of the Qinling Mountains)are similar to those of the temperate mountains.While it shows obvious transitional characteristics in the vast area between the northern slope of the Daba Mountains and the southern slope of the Qinling Mountains:the basal belts gradually transit from the evergreen broadleaved forest belt(basal belt in subtropical mountains)to the evergreen and deciduous broad-leaved mixed forest belt,and the dominant belts also transit from the evergreen broad-leaved forest belt to the evergreen and deciduous broad-leaved mixed forest belt or the deciduous broad-leaved forest belt.(2)The transitional zone between the subtropical zone and the warm temperate zone is located between the northern slope of the Daba Mountains and the southern slope of the Qinling Mountains.The southern boundary of the transitional zone is along the northern slope of Shennongjia Mountain-the northern slope of Micang Mountain-Baishuijiang Nature Reserve,and the northern boundary is along the southern slope of Funiu Mountain-the southern slope of Taibai Mountain-Lianhua Mountain.Additionally,in the transitional zone,the average temperature in January is between-5°C and 1°C,the annual average temperature is between 10°C and 13°C except Hanzhong Basin and Hanshui Valley,and the accumulated temperature above 10°C ranges from 2000°C to 4000°C,the annual rainfall is about 800-1000 mm.The results provide a scientific basis for revealing the characteristics of China’s north-south transitional zone and scientific division of the boundary between the subtropical zone and warm temperate zone in China.展开更多
The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows ...The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.展开更多
Using the Gleeble 3500 thermal-mechanical system to simulate thermal cycles with different peak temperatures, the hardness and microstructure in the heat-affected zones of two kinds of 100 kg class hot-rolled extra-hi...Using the Gleeble 3500 thermal-mechanical system to simulate thermal cycles with different peak temperatures, the hardness and microstructure in the heat-affected zones of two kinds of 100 kg class hot-rolled extra-high-strength steel were compared. When the peak temperature of the thermal cycle was 800℃ ,incomplete transformation occurred during quenching in both steels, and massive martensite and bainite grains were formed. The hardness was determined by the composition and distribution of the microstructure. The concentration of massive martensite was low, and hence the hardness was low,in steel #1. Conversely,the massive martensite content in steel #2 was high and uniformly distributed,resulting in a high hardness. These findings can provide a reference for improving the mechanical properties in the softened zone.展开更多
Studies of seven typical soil profiles showed that in the argillic soils derived from loess in the warmtemperate zone of China all the oxides of Fe, Mn, Al and Si were enriched with the accumulation of clayfraction in...Studies of seven typical soil profiles showed that in the argillic soils derived from loess in the warmtemperate zone of China all the oxides of Fe, Mn, Al and Si were enriched with the accumulation of clayfraction in the profiles. But owing to the influence of oxidation-reduction process the migration velocity ofFe and Mn was faster than that of clay. The free degrees of those metals were in the sequence Mn>Fe>Al,which reflected their different chemical activities in soil. In soils at the same level of development, the freedegree of iron and its activity, the free degree of Al, Alo/Alt× 100, SiO_2/R_2O_3, Sio/Sit× 100, and themagnetic susceptibility were relatively close to each other respectively. It might be considered that both thefres degrees of Fe and Al and Alo/Alt× 100 could serve as the distinctive indexes for argillic soils in warmtemperate zone. The paleoclimate corresponding to the fifth layer of paleosol (s_5) in Lnochuan, Shaanxiwas warmer and more humid than the present, and the paleoecological landscape approximated to today'sbioclimatic belt between the temperate deciduous broadleaved forest and the semiarid forest types.The Mossbouer spectra of the colloidal fraction (<1um) in the clayified horizon of argillic dark loessialsoil, cinnamon soil, brown earth and (s_5) paleosol indicated the superparamagnetic state at room temperature.The magnetic splitting six line spectra were observed clearly at 80 K. The results fitted with a computershowed that hematite and goethite were predominant in iron oxides and commonly existed as fine particles.The proportion of hematite and goethite in soil colloids varied considerably with different climates. Thehigher the temperature, the larger the proportion of hematite.展开更多
Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate...Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate and butt CO<sub>2</sub> Laser Welding (LW) of 7 mm thick high-strength quenched and tempered low alloy SM570 (JIS) steel plates. The influence of laser welding parameters, mainly welding speed, defocusing distance and shielding gas flow rate on the weld profile, i.e., weld zone penetration depth and width, microstructure and mechanical properties of welded joints was determined. All welded joints showed smooth and uniform weld beads free from superficial porosity and undercuts. The selected best welding conditions were a laser power of 5.0 kW, welding speed of 500 mm/min, argon gas shielding flow rate of 30 L/min and a defocusing distance of -0.5 mm. It was observed that these conditions gave complete penetration and minimized the width of the weld bead. The microstructure of the welded joints was evaluated by light optical microscopy. The weld metal (WM) and heat-affected zone (HAZ) near weld metal achieved maximum hardness (355 HV). The tensile fractured samples showed the ductile mode of failure and ultimate tensile strength of 580 MPa.展开更多
基金supported by the ‘‘Doctoral Scientific Research Foundation’’ of Heilongjiang Bayi Agricultural University,Grant No.XDB2015-02 and the ‘‘Strategic Priority Research Program’’ of the Chinese Academy of Sciences,Grant No.XDA05050203-04-01
文摘Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued.
基金funded by the Natural Science Foundation of China(Grant No.41871350)Scientific and Technological Basic Resources Survey Project(Grant No.2017FY100900)。
文摘The Qinling Mountains has always been regarded as an essential dividing line between the warm temperate zone and the subtropical zone in eastern China and plays a vital role in the geoecological pattern of China.However,there is controversy about the specific location of this geographical boundary in the academic community.As a product of the combined effects of zonal and non-zonal factors,the mountain altitudinal belts(MABs)can reflect both the horizontal zonality and the vertical zonality of vegetation distribution.Using the MAB information,we can not only profoundly understand the complex mountain system of QinlingDaba Mountains but can also judge its nature as a geographical boundary more scientifically.Therefore,based on the comparative analysis of basal belt,dominant belt characteristics and belt structure characteristics of the MABs in Qinling-Daba Mountains,subtropical and temperate mountains,this paper analyzed the MAB differences and similarities among Qinling-Daba Mountains,subtropical and temperate typical mountains,to reveal the vegetation distribution characteristics in the north-south transitional zone.The results show that:(1)The MABs of the southern part of QinlingDaba Mountains(southern slope of the Daba Mountains)are the same or similar to those of the Subtropical Mountains,and the MABs of the northern part of Qinling-Daba Mountains(northern slope of the Qinling Mountains)are similar to those of the temperate mountains.While it shows obvious transitional characteristics in the vast area between the northern slope of the Daba Mountains and the southern slope of the Qinling Mountains:the basal belts gradually transit from the evergreen broadleaved forest belt(basal belt in subtropical mountains)to the evergreen and deciduous broad-leaved mixed forest belt,and the dominant belts also transit from the evergreen broad-leaved forest belt to the evergreen and deciduous broad-leaved mixed forest belt or the deciduous broad-leaved forest belt.(2)The transitional zone between the subtropical zone and the warm temperate zone is located between the northern slope of the Daba Mountains and the southern slope of the Qinling Mountains.The southern boundary of the transitional zone is along the northern slope of Shennongjia Mountain-the northern slope of Micang Mountain-Baishuijiang Nature Reserve,and the northern boundary is along the southern slope of Funiu Mountain-the southern slope of Taibai Mountain-Lianhua Mountain.Additionally,in the transitional zone,the average temperature in January is between-5°C and 1°C,the annual average temperature is between 10°C and 13°C except Hanzhong Basin and Hanshui Valley,and the accumulated temperature above 10°C ranges from 2000°C to 4000°C,the annual rainfall is about 800-1000 mm.The results provide a scientific basis for revealing the characteristics of China’s north-south transitional zone and scientific division of the boundary between the subtropical zone and warm temperate zone in China.
基金supported by the Key State Science and Technology Projects(Grant No.2011ZX04016-061 and No.2012ZX06004-001-001-005)
文摘The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.
文摘Using the Gleeble 3500 thermal-mechanical system to simulate thermal cycles with different peak temperatures, the hardness and microstructure in the heat-affected zones of two kinds of 100 kg class hot-rolled extra-high-strength steel were compared. When the peak temperature of the thermal cycle was 800℃ ,incomplete transformation occurred during quenching in both steels, and massive martensite and bainite grains were formed. The hardness was determined by the composition and distribution of the microstructure. The concentration of massive martensite was low, and hence the hardness was low,in steel #1. Conversely,the massive martensite content in steel #2 was high and uniformly distributed,resulting in a high hardness. These findings can provide a reference for improving the mechanical properties in the softened zone.
文摘Studies of seven typical soil profiles showed that in the argillic soils derived from loess in the warmtemperate zone of China all the oxides of Fe, Mn, Al and Si were enriched with the accumulation of clayfraction in the profiles. But owing to the influence of oxidation-reduction process the migration velocity ofFe and Mn was faster than that of clay. The free degrees of those metals were in the sequence Mn>Fe>Al,which reflected their different chemical activities in soil. In soils at the same level of development, the freedegree of iron and its activity, the free degree of Al, Alo/Alt× 100, SiO_2/R_2O_3, Sio/Sit× 100, and themagnetic susceptibility were relatively close to each other respectively. It might be considered that both thefres degrees of Fe and Al and Alo/Alt× 100 could serve as the distinctive indexes for argillic soils in warmtemperate zone. The paleoclimate corresponding to the fifth layer of paleosol (s_5) in Lnochuan, Shaanxiwas warmer and more humid than the present, and the paleoecological landscape approximated to today'sbioclimatic belt between the temperate deciduous broadleaved forest and the semiarid forest types.The Mossbouer spectra of the colloidal fraction (<1um) in the clayified horizon of argillic dark loessialsoil, cinnamon soil, brown earth and (s_5) paleosol indicated the superparamagnetic state at room temperature.The magnetic splitting six line spectra were observed clearly at 80 K. The results fitted with a computershowed that hematite and goethite were predominant in iron oxides and commonly existed as fine particles.The proportion of hematite and goethite in soil colloids varied considerably with different climates. Thehigher the temperature, the larger the proportion of hematite.
文摘Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate and butt CO<sub>2</sub> Laser Welding (LW) of 7 mm thick high-strength quenched and tempered low alloy SM570 (JIS) steel plates. The influence of laser welding parameters, mainly welding speed, defocusing distance and shielding gas flow rate on the weld profile, i.e., weld zone penetration depth and width, microstructure and mechanical properties of welded joints was determined. All welded joints showed smooth and uniform weld beads free from superficial porosity and undercuts. The selected best welding conditions were a laser power of 5.0 kW, welding speed of 500 mm/min, argon gas shielding flow rate of 30 L/min and a defocusing distance of -0.5 mm. It was observed that these conditions gave complete penetration and minimized the width of the weld bead. The microstructure of the welded joints was evaluated by light optical microscopy. The weld metal (WM) and heat-affected zone (HAZ) near weld metal achieved maximum hardness (355 HV). The tensile fractured samples showed the ductile mode of failure and ultimate tensile strength of 580 MPa.