There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyze...There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.展开更多
Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out...Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.展开更多
To identify the instability on large scale underground mined-out area in the metal mine effectively,the parameters of radial basis function were determined through clustering method and the improved fuzzy radial basis...To identify the instability on large scale underground mined-out area in the metal mine effectively,the parameters of radial basis function were determined through clustering method and the improved fuzzy radial basis function neural network(FRBFNN)model of instability identification model about large scale underground mined-out area in the metal mine was built.The improved FRBFNN model was trained and tested.The results show that the improved FRBFNN model has high training accuracy and generalization ability.Parameters such as pillar area ratio,filling level and the value of rock quality designation have strong influence on instability of large scale underground mined-out area.Correctness of analysis about the improved FRBFNN model was proved by the practical application results about instability discrimination of surrounding rock in large-scale underground mined-out area of a metal mine in south China.展开更多
The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vege...The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement.展开更多
The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve mod...The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve model in consideration of the shortage of current surface subsidence time functions. By analyzing the characteristics of the new time function, we found that it could meet the dynamic process, the velocity change process and the acceleration change process during surface subsidence. Then its rationality had been verified through project cases. The results show that the proposed time function model can give a good reflection of the regularity of surface subsidence in mined-out area and can accurately predict surface subsidence. And the prediction data of the model are a little greater than measured data on condition of proper measured data quantity, which is safety in the engineering. This model provides a new method for the analysis of surface subsidence in mined-out area and reference for future prediction, and it is valuable to engineering application.展开更多
A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achievin...A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.展开更多
BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentu...BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentuating diabetic complications.An inflammatory link exists between diabetic retinopathy(DR)and periodontitis,but the studies regarding this association and the role of lipoprotein(a)[Lp(a)]and interleukin-6(IL-6)in these conditions are scarce in the literature.AIM To determine the correlation of periodontal inflamed surface area(PISA)with glycated Hb(HbA1c),serum IL-6 and Lp(a)in T2DM subjects with retinopathy.METHODS This cross-sectional study comprised 40 T2DM subjects with DR and 40 T2DM subjects without DR.All subjects were assessed for periodontal parameters[bleeding on probing(BOP),probing pocket depth,clinical attachment loss(CAL),oral hygiene index-simplified,plaque index(PI)and PISA],and systemic parameters[HbA1c,fasting plasma glucose and postprandial plasma glucose,fasting lipid profile,serum IL-6 and serum Lp(a)].RESULTS The proportion of periodontitis in T2DM with and without DR was 47.5%and 27.5%respectively.Severity of periodontitis,CAL,PISA,IL-6 and Lp(a)were higher in T2DM with DR group compared to T2DM without DR group.Significant difference was observed in the mean percentage of sites with BOP between T2DM with DR(69%)and T2DM without DR(41%),but there was no significant difference in PI(P>0.05).HbA1c was positively correlated with CAL(r=0.351,P=0.001),and PISA(r=0.393,P≤0.001)in study subjects.A positive correlation was found between PISA and IL-6(r=0.651,P<0.0001);PISA and Lp(a)(r=0.59,P<0.001);CAL and IL-6(r=0.527,P<0.0001)and CAL and Lp(a)(r=0.631,P<0.001)among study subjects.CONCLUSION Despite both groups having poor glycemic control and comparable plaque scores,the periodontal parameters were higher in DR as compared to T2DM without DR.Since a bidirectional link exists between periodontitis and DM,the presence of DR may have contributed to the severity of periodontal destruction and periodontitis may have influenced the progression of DR.展开更多
In the Mediterranean region,despite bamboo being an alien species that can seriously alter plant and ani-mal biocoenosis,the area occupied by bamboo plantations continues to increase,especially for the purpose to sequ...In the Mediterranean region,despite bamboo being an alien species that can seriously alter plant and ani-mal biocoenosis,the area occupied by bamboo plantations continues to increase,especially for the purpose to seques-ter carbon(C).However,the C dynamics in the soil-plant system when bamboo is grown outside its native area are poorly understood.Here we investigated the C mitigation potential of the fast-growing Moso bamboo(Phyllostachys edulis)introduced in Italy for climate-change mitigation.We analyzed aboveground(AGB)and belowground(as root/shoot ratio)biomass,litter and soil organic C(SOC)at O-15-and 15-30-cm depths in a 4-year-old bamboo plantation in comparison with the former annual cropland on which the bamboo was established.To have an idea of the maximum C stored at an ecosystem level,a natural forest adjacent the two sites was also considered.In the plantation,C accumulation as AGB was stimulated,with 14.8±3.1 Mg C ha^(-1) stored in 3 years;because thinning was done to remove culms from the first year,the mean sequestration rate was 4.9 Mg C ha^(-1) a^(-1).The sequestration rates were high but comparable to other fast-growing tree species in Italy(e.g.,Pinus nigra).SOC was significantly higher in the bamboo plantation than in the cropland only at the 0-15 cm depth,but SOC stock did not differ.Possibly 4 years were not enough time for a clear increase in SOC,or the high nutrient uptake by bamboos might have depleted the soil nutrients,thus inhibiting the soil organic matter formation by bacteria.In comparison,the natural forest had significantly higher C levels in all the pools.For C dynamics at an ecosystem level,the bamboo plantation on the former annual cropland led to substantial C removal from the atmosphere(about 12 Mg C ha^(-1) a^(-1)).However,despite the promising C sequestration rates by bamboo,its introduction should be carefully considered due to potential ecological problems caused by this species in overexploited environments such as the Mediterranean area.展开更多
The presence of invasive plant species poses a substantial ecological impact,thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary.This study uses maximum e...The presence of invasive plant species poses a substantial ecological impact,thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary.This study uses maximum entropy(MaxEnt)modeling to forecast the likelihood of Leucaena leucocephala(Lam.)de Wit invasion in Saudi Arabia under present and future climate change scenarios.Utilizing the MaxEnt modeling,we integrated climatic and soil data to predict habitat suitability for the invasive species.We conducted a detailed analysis of the distribution patterns of the species,using climate variables and ecological factors.We focused on the important influence of temperature seasonality,temperature annual range,and precipitation seasonality.The distribution modeling used robust measures of area under the curve(AUC)and receiver-operator characteristic(ROC)curves,to map the invasion extent,which has a high level of accuracy in identifying appropriate habitats.The complex interaction that influenced the invasion of L.leucocephala was highlighted by the environmental parameters using Jackknife test.Presently,the actual geographic area where L.leucocephala was found in Saudi Arabia was considerably smaller than the theoretical maximum range,suggesting that it had the capacity to expand further.The MaxEnt model exhibited excellent prediction accuracy and produced reliable results based on the data from the ROC curve.Precipitation and temperature were the primary factors influencing the potential distribution of L.leucocephala.Currently,an estimated area of 216,342 km^(2)in Saudi Arabia was at a high probability of invasion by L.leucocephala.We investigated the potential for increased invasion hazards in the future due to climate change scenarios(Shared Socioeconomic Pathways(SSPs)245 and 585).The analysis of key climatic variables,including temperature seasonality and annual range,along with soil properties such as clay composition and nitrogen content,unveiled their substantial influence on the distribution dynamic of L.leucocephala.Our findings indicated a significant expansion of high risk zones.High-risk zones for L.leucocephala invasion in the current climate conditions had notable expansions projected under future climate scenarios,particularly evident in southern Makkah,Al Bahah,Madina,and Asir areas.The results,backed by thorough spatial studies,emphasize the need to reduce the possible ecological impacts of climate change on the spread of L.leucocephala.Moreover,the study provides valuable strategic insights for the management of invasion,highlighting the intricate relationship between climate change,habitat appropriateness,and the risks associated with invasive species.Proactive techniques are suggested to avoid and manage the spread of L.leucocephala,considering its high potential for future spread.This study enhances the overall comprehension of the dynamics of invasive species by combining modeling techniques with ecological knowledge.It also provides valuable information for decision-making to implement efficient conservation and management strategies in response to changing environmental conditions.展开更多
This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(V...This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.展开更多
At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es...At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.展开更多
Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human...Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human settlements,it is significant for exploring the evolution characteristics of urban thermal environment and analyzing its driving forces.Taking the Landsat series images as the basic data sources,the winter land surface temperature(LST)of the rapid urbanization area of Fuzhou City in China was quantitatively retrieved from 2001 to 2021.Combing comprehensively the standard deviation ellipse model,profile analysis and GeoDetector model,the spatio-temporal evolution characteristics and influencing factors of the winter urban thermal environment were systematically analyzed.The results showed that the winter LST presented an increasing trend in the study area during 2001–2021,and the winter LST of the central urban regions was significantly higher than the suburbs.There was a strong UHI effect from 2001 to 2021with an expansion trend from the central urban regions to the suburbs and coastal areas in space scale.The LST of green lands and wetlands are significantly lower than croplands,artificial surface and unvegetated lands.Vegetation and water bodies had a significant mitigation effect on UHI,especially in the micro-scale.The winter UHI had been jointly driven by the underlying surface and socio-economic factors in a nonlinear or two-factor interactive enhancement mode,and socio-economic factors had played a leading role.This research could provide data support and decision-making references for rationally planning urban layout and promoting sustainable urban development.展开更多
The Annapurna Conservation Area (ACA), the first conservation area and the largest protected area (PA) in Nepal, is incredibly rich in biodiversity. Notwithstanding this, orchids in the ACA have not been explored enou...The Annapurna Conservation Area (ACA), the first conservation area and the largest protected area (PA) in Nepal, is incredibly rich in biodiversity. Notwithstanding this, orchids in the ACA have not been explored enough yet thus making the need for ambitious research to be carried out. Previous study only included 81 species of orchids within ACA. This study aims to update the record of species and genera richness in the ACA. In total 198 species of orchids, belonging to 67 genera (40% and 62% of the total recorded orchid species and genera in Nepal) has been recorded in ACA. This represents an increase of 144% in species and 56% in genera over the previous data. Out of the 198 species, 99 were epiphytes, 6 were holomycotrophic and 93 were terrestrial. Among the 67 genera, Bulbophyllum (17) species were dominant, followed by Dendrobium (16), Herminium (10), Coelogyne, Plantanthera (9 each), Eria, Habenaria, Oberonia (8 each), Calanthe (7), and Liparis (6). Fifty-six species were found to be ornamentally significant and 85 species medicinally significant.展开更多
Mussel aquaculture and large yellow croaker aquaculture areas and their environmental characteristics in Zhoushan were analyzed using satellite data and in-situ surveys.A new two-step remote sensing method was propose...Mussel aquaculture and large yellow croaker aquaculture areas and their environmental characteristics in Zhoushan were analyzed using satellite data and in-situ surveys.A new two-step remote sensing method was proposed and applied to determine the basic environmental characteristics of the best mussel and large yellow croaker aquaculture areas.This methodology includes the first step of extraction of the location distribution and the second step of the extraction of internal environmental factors.The fishery ranching index(FRI1,FRI2)was established to extract the mussel and the large yellow croaker aquaculture area in Zhoushan,using Gaofen-1(GF-1)and Gaofen-6(GF-6)satellite data with a special resolution of 2 m.In the second step,the environmental factors such as sea surface temperature(SST),chlorophyll a(Chl-a)concentration,current and tide,suspended sediment concentration(SSC)in mussel aquaculture area and large yellow croaker aquaculture area were extracted and analyzed in detail.The results show the following three points.(1)For the extraction of the mussel aquaculture area,FRI1 and FRI2 are complementary,and the combination of FRI1 and FRI2 is suitable to extract the mussel aquaculture area.As for the large yellow croaker aquaculture area extraction,FRI2 is suitable.(2)Mussel aquaculture and the large yellow croaker aquaculture area in Zhoushan are mainly located on the side near the islands that are away from the eastern open waters.The water environment factor template suitable for mussel and large yellow croaker aquaculture was determined.(3)This two-step remote sensing method can be used for the preliminary screening of potential site selection for the mussels and large yellow croaker aquaculture area in the future.the fishery ranching index(FRI1,FRI2)in this paper can be applied to extract the mussel and large yellow croaker aquaculture areas in coastal waters around the world.展开更多
Malnutrition refers to the deficiency, imbalances, or excesses in a person’s intake of energy or nutrients [1]. Khan defines anaemia as below level of Haemoglobin in red blood shown by a lower number of functioning r...Malnutrition refers to the deficiency, imbalances, or excesses in a person’s intake of energy or nutrients [1]. Khan defines anaemia as below level of Haemoglobin in red blood shown by a lower number of functioning red blood cells [2]. The crisis in the North West and South West Regions of Cameroon has led to several negative effects on children’s living conditions. There has been an increase in malnutrition and anaemia in the South West Region and Kumba in particular. The main objective of this study was “to examine the prevalence of malnutrition and anaemia in children ≤ 5 years of age in some conflict-hit areas of Meme Division”. A descriptive cross-sectional study was conducted in 2023 from March to June. We recruited 200 children ≤ 5 years into the study from three hospitals. The regional hospital annex in Kumba, Presbyterian General Hospital Kumba and the Ntam Hospital in Kumba. Socio-demographic factors were assessed using questionnaire, nutritional status was assessed by the use anthropometric measurements and an auto haematology analyser was used to determine anaemia. The overall prevalence of malnutrition in the study area was 40.5%. The prevalence of malnutrition varied significantly (P < 0.001) with the study sites. The overall prevalence of anaemia in the study area was 70.5%. The prevalence of anaemia was not significantly associated with the study sites. The prevalence of Malnutrition and Anaemia in children ≤ 5 years of age is very high in the Kumba municipalities. This could be attributed to the ongoing crisis which has caused a lot of social migrations from rural areas to Urban areas which are safer.展开更多
In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urb...In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective.展开更多
Rural areas are crucial for a country’s sustainable economy.New strategies are needed to develop rural areas to improve the well-being of rural population and generate new job opportunities.This is especially importa...Rural areas are crucial for a country’s sustainable economy.New strategies are needed to develop rural areas to improve the well-being of rural population and generate new job opportunities.This is especially important in countries where agricultural production accounts for a significant share of the gross product,such as Russia.In this study,we identified the key indicators of satisfaction and differences between rural and urban citizens based on their social,economic,and environmental backgrounds,and determined whether there are well-being disparities between rural and urban areas in the Stavropol Territory,Russia.We collected primary data through a survey based on the European Social Survey framework to investigate the potential differences between rural and urban areas.By computing the regional well-being index using principal component analysis,we found that there was no statistically significant difference in well-being between rural and urban areas.Results of key indicators showed that rural residents felt psychologically more comfortable and safer,assessed their family relationships better,and adhered more to traditions and customs.However,urban residents showed better economic and social conditions(e.g.,infrastructures,medical care,education,and Internet access).The results of this study imply that we can better understand the local needs,advantages,and unique qualities,thereby gaining insight into the effectiveness of government programs.Policy-makers and local authorities can consider targeted interventions based on the findings of this study and strive to enhance the well-being of both urban and rural residents.展开更多
Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years...Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.展开更多
In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extract...In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment.展开更多
Access to basic infrastructure and services is a factor in economic development and an important aspect in combatting social and spatial disparities. But this access is often subject to several constraints, including ...Access to basic infrastructure and services is a factor in economic development and an important aspect in combatting social and spatial disparities. But this access is often subject to several constraints, including geographical accessibility. In this article, we aim to analyze the geographical accessibility to basic infrastructure and services in the Niakhar area, using the improved two step floating catchment area method and local spatial association indicators. The results reveal that the areas with high accessibility to health and education infrastructures and services are mainly located along the south-east and north-west gradient, while those with low accessibility are found in the south-west and north-east center. They also show high accessibility to trade services in the center of the study area.展开更多
基金Project(2012BAK09B02-05)supported by the National"Twelfth Five"Science and Technology Support Program,ChinaProject(51274250)supported by the National Natural Science Foundation of China+2 种基金Project(2013zzts057)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(11KF02)supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine safety,CUMT,ChinaProject(2012M511417)supported by China Postdoctoral Science Foundation
文摘There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.
基金Project (50490272) supported by the National Natural Science Foundation of China project(NCET-05-0687) supportedby Programfor New Century Excellent Talents project (040109) supported bythe Doctor Degree Paper Innovation Engineering of CentralSouth University
文摘Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.
基金financially supported by the National"Twelfth-Five-Year"Science&Technology Support Plan(No.2012BAK09B02-05)the National Natural Science Foundation of China(No.51274250)
文摘To identify the instability on large scale underground mined-out area in the metal mine effectively,the parameters of radial basis function were determined through clustering method and the improved fuzzy radial basis function neural network(FRBFNN)model of instability identification model about large scale underground mined-out area in the metal mine was built.The improved FRBFNN model was trained and tested.The results show that the improved FRBFNN model has high training accuracy and generalization ability.Parameters such as pillar area ratio,filling level and the value of rock quality designation have strong influence on instability of large scale underground mined-out area.Correctness of analysis about the improved FRBFNN model was proved by the practical application results about instability discrimination of surrounding rock in large-scale underground mined-out area of a metal mine in south China.
基金This work was financially supported by the National Natural Science Foundation of China (No. 10402033) and the Key Lab. Foun-dation of the Ministry of Education of China (No.04JS19).
文摘The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 50334060)
文摘The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve model in consideration of the shortage of current surface subsidence time functions. By analyzing the characteristics of the new time function, we found that it could meet the dynamic process, the velocity change process and the acceleration change process during surface subsidence. Then its rationality had been verified through project cases. The results show that the proposed time function model can give a good reflection of the regularity of surface subsidence in mined-out area and can accurately predict surface subsidence. And the prediction data of the model are a little greater than measured data on condition of proper measured data quantity, which is safety in the engineering. This model provides a new method for the analysis of surface subsidence in mined-out area and reference for future prediction, and it is valuable to engineering application.
基金supported by the National Key Research and Development Program of China(2021YFC2902004)the National Natural Science Foundation of China(42072284,42027801,and 41877186).
文摘A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.
文摘BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentuating diabetic complications.An inflammatory link exists between diabetic retinopathy(DR)and periodontitis,but the studies regarding this association and the role of lipoprotein(a)[Lp(a)]and interleukin-6(IL-6)in these conditions are scarce in the literature.AIM To determine the correlation of periodontal inflamed surface area(PISA)with glycated Hb(HbA1c),serum IL-6 and Lp(a)in T2DM subjects with retinopathy.METHODS This cross-sectional study comprised 40 T2DM subjects with DR and 40 T2DM subjects without DR.All subjects were assessed for periodontal parameters[bleeding on probing(BOP),probing pocket depth,clinical attachment loss(CAL),oral hygiene index-simplified,plaque index(PI)and PISA],and systemic parameters[HbA1c,fasting plasma glucose and postprandial plasma glucose,fasting lipid profile,serum IL-6 and serum Lp(a)].RESULTS The proportion of periodontitis in T2DM with and without DR was 47.5%and 27.5%respectively.Severity of periodontitis,CAL,PISA,IL-6 and Lp(a)were higher in T2DM with DR group compared to T2DM without DR group.Significant difference was observed in the mean percentage of sites with BOP between T2DM with DR(69%)and T2DM without DR(41%),but there was no significant difference in PI(P>0.05).HbA1c was positively correlated with CAL(r=0.351,P=0.001),and PISA(r=0.393,P≤0.001)in study subjects.A positive correlation was found between PISA and IL-6(r=0.651,P<0.0001);PISA and Lp(a)(r=0.59,P<0.001);CAL and IL-6(r=0.527,P<0.0001)and CAL and Lp(a)(r=0.631,P<0.001)among study subjects.CONCLUSION Despite both groups having poor glycemic control and comparable plaque scores,the periodontal parameters were higher in DR as compared to T2DM without DR.Since a bidirectional link exists between periodontitis and DM,the presence of DR may have contributed to the severity of periodontal destruction and periodontitis may have influenced the progression of DR.
基金supported by the “Project funded by the European Union-Next Generation EU”
文摘In the Mediterranean region,despite bamboo being an alien species that can seriously alter plant and ani-mal biocoenosis,the area occupied by bamboo plantations continues to increase,especially for the purpose to seques-ter carbon(C).However,the C dynamics in the soil-plant system when bamboo is grown outside its native area are poorly understood.Here we investigated the C mitigation potential of the fast-growing Moso bamboo(Phyllostachys edulis)introduced in Italy for climate-change mitigation.We analyzed aboveground(AGB)and belowground(as root/shoot ratio)biomass,litter and soil organic C(SOC)at O-15-and 15-30-cm depths in a 4-year-old bamboo plantation in comparison with the former annual cropland on which the bamboo was established.To have an idea of the maximum C stored at an ecosystem level,a natural forest adjacent the two sites was also considered.In the plantation,C accumulation as AGB was stimulated,with 14.8±3.1 Mg C ha^(-1) stored in 3 years;because thinning was done to remove culms from the first year,the mean sequestration rate was 4.9 Mg C ha^(-1) a^(-1).The sequestration rates were high but comparable to other fast-growing tree species in Italy(e.g.,Pinus nigra).SOC was significantly higher in the bamboo plantation than in the cropland only at the 0-15 cm depth,but SOC stock did not differ.Possibly 4 years were not enough time for a clear increase in SOC,or the high nutrient uptake by bamboos might have depleted the soil nutrients,thus inhibiting the soil organic matter formation by bacteria.In comparison,the natural forest had significantly higher C levels in all the pools.For C dynamics at an ecosystem level,the bamboo plantation on the former annual cropland led to substantial C removal from the atmosphere(about 12 Mg C ha^(-1) a^(-1)).However,despite the promising C sequestration rates by bamboo,its introduction should be carefully considered due to potential ecological problems caused by this species in overexploited environments such as the Mediterranean area.
基金the Researchers Supporting Project(RSP2024R347),King Saud University,Riyadh,Saudi Arabia.
文摘The presence of invasive plant species poses a substantial ecological impact,thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary.This study uses maximum entropy(MaxEnt)modeling to forecast the likelihood of Leucaena leucocephala(Lam.)de Wit invasion in Saudi Arabia under present and future climate change scenarios.Utilizing the MaxEnt modeling,we integrated climatic and soil data to predict habitat suitability for the invasive species.We conducted a detailed analysis of the distribution patterns of the species,using climate variables and ecological factors.We focused on the important influence of temperature seasonality,temperature annual range,and precipitation seasonality.The distribution modeling used robust measures of area under the curve(AUC)and receiver-operator characteristic(ROC)curves,to map the invasion extent,which has a high level of accuracy in identifying appropriate habitats.The complex interaction that influenced the invasion of L.leucocephala was highlighted by the environmental parameters using Jackknife test.Presently,the actual geographic area where L.leucocephala was found in Saudi Arabia was considerably smaller than the theoretical maximum range,suggesting that it had the capacity to expand further.The MaxEnt model exhibited excellent prediction accuracy and produced reliable results based on the data from the ROC curve.Precipitation and temperature were the primary factors influencing the potential distribution of L.leucocephala.Currently,an estimated area of 216,342 km^(2)in Saudi Arabia was at a high probability of invasion by L.leucocephala.We investigated the potential for increased invasion hazards in the future due to climate change scenarios(Shared Socioeconomic Pathways(SSPs)245 and 585).The analysis of key climatic variables,including temperature seasonality and annual range,along with soil properties such as clay composition and nitrogen content,unveiled their substantial influence on the distribution dynamic of L.leucocephala.Our findings indicated a significant expansion of high risk zones.High-risk zones for L.leucocephala invasion in the current climate conditions had notable expansions projected under future climate scenarios,particularly evident in southern Makkah,Al Bahah,Madina,and Asir areas.The results,backed by thorough spatial studies,emphasize the need to reduce the possible ecological impacts of climate change on the spread of L.leucocephala.Moreover,the study provides valuable strategic insights for the management of invasion,highlighting the intricate relationship between climate change,habitat appropriateness,and the risks associated with invasive species.Proactive techniques are suggested to avoid and manage the spread of L.leucocephala,considering its high potential for future spread.This study enhances the overall comprehension of the dynamics of invasive species by combining modeling techniques with ecological knowledge.It also provides valuable information for decision-making to implement efficient conservation and management strategies in response to changing environmental conditions.
基金supported by the research funds for Coupling Research on Industrial Upgrade and Environmental Management in the Bohai Rim-Technique,methodology,and Environmental Economic Policies(No.42076221).
文摘This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.
基金National Natural Science Fund of China under Nos.52168072 and 51808467High-level Talents Support Plan of Yunnan Province of China(2020)。
文摘At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.
基金Under the auspices of the Social Science and Humanity on Young Fund of the Ministry of Education of China(No.21YJCZH100)the Scientific Research Project on Outstanding Young of the Fujian Agriculture and Forestry University(No.XJQ201920)+1 种基金the Science and Technology Innovation Special Fund Project of Fujian Agriculture and Forestry University(No.CXZX2021032)the Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University(No.72202200205)。
文摘Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human settlements,it is significant for exploring the evolution characteristics of urban thermal environment and analyzing its driving forces.Taking the Landsat series images as the basic data sources,the winter land surface temperature(LST)of the rapid urbanization area of Fuzhou City in China was quantitatively retrieved from 2001 to 2021.Combing comprehensively the standard deviation ellipse model,profile analysis and GeoDetector model,the spatio-temporal evolution characteristics and influencing factors of the winter urban thermal environment were systematically analyzed.The results showed that the winter LST presented an increasing trend in the study area during 2001–2021,and the winter LST of the central urban regions was significantly higher than the suburbs.There was a strong UHI effect from 2001 to 2021with an expansion trend from the central urban regions to the suburbs and coastal areas in space scale.The LST of green lands and wetlands are significantly lower than croplands,artificial surface and unvegetated lands.Vegetation and water bodies had a significant mitigation effect on UHI,especially in the micro-scale.The winter UHI had been jointly driven by the underlying surface and socio-economic factors in a nonlinear or two-factor interactive enhancement mode,and socio-economic factors had played a leading role.This research could provide data support and decision-making references for rationally planning urban layout and promoting sustainable urban development.
文摘The Annapurna Conservation Area (ACA), the first conservation area and the largest protected area (PA) in Nepal, is incredibly rich in biodiversity. Notwithstanding this, orchids in the ACA have not been explored enough yet thus making the need for ambitious research to be carried out. Previous study only included 81 species of orchids within ACA. This study aims to update the record of species and genera richness in the ACA. In total 198 species of orchids, belonging to 67 genera (40% and 62% of the total recorded orchid species and genera in Nepal) has been recorded in ACA. This represents an increase of 144% in species and 56% in genera over the previous data. Out of the 198 species, 99 were epiphytes, 6 were holomycotrophic and 93 were terrestrial. Among the 67 genera, Bulbophyllum (17) species were dominant, followed by Dendrobium (16), Herminium (10), Coelogyne, Plantanthera (9 each), Eria, Habenaria, Oberonia (8 each), Calanthe (7), and Liparis (6). Fifty-six species were found to be ornamentally significant and 85 species medicinally significant.
基金The National Key Research and Development Program of China under contract Nos 2023YFD2401900 and 2020YFD09008004the National Natural Science Foundation of China Key International(Regional)Cooperative Research Project under contract No.42020104009the Basic Public Welfare Research Program of Zhejiang Province under contract No.LGF21D010004.
文摘Mussel aquaculture and large yellow croaker aquaculture areas and their environmental characteristics in Zhoushan were analyzed using satellite data and in-situ surveys.A new two-step remote sensing method was proposed and applied to determine the basic environmental characteristics of the best mussel and large yellow croaker aquaculture areas.This methodology includes the first step of extraction of the location distribution and the second step of the extraction of internal environmental factors.The fishery ranching index(FRI1,FRI2)was established to extract the mussel and the large yellow croaker aquaculture area in Zhoushan,using Gaofen-1(GF-1)and Gaofen-6(GF-6)satellite data with a special resolution of 2 m.In the second step,the environmental factors such as sea surface temperature(SST),chlorophyll a(Chl-a)concentration,current and tide,suspended sediment concentration(SSC)in mussel aquaculture area and large yellow croaker aquaculture area were extracted and analyzed in detail.The results show the following three points.(1)For the extraction of the mussel aquaculture area,FRI1 and FRI2 are complementary,and the combination of FRI1 and FRI2 is suitable to extract the mussel aquaculture area.As for the large yellow croaker aquaculture area extraction,FRI2 is suitable.(2)Mussel aquaculture and the large yellow croaker aquaculture area in Zhoushan are mainly located on the side near the islands that are away from the eastern open waters.The water environment factor template suitable for mussel and large yellow croaker aquaculture was determined.(3)This two-step remote sensing method can be used for the preliminary screening of potential site selection for the mussels and large yellow croaker aquaculture area in the future.the fishery ranching index(FRI1,FRI2)in this paper can be applied to extract the mussel and large yellow croaker aquaculture areas in coastal waters around the world.
文摘Malnutrition refers to the deficiency, imbalances, or excesses in a person’s intake of energy or nutrients [1]. Khan defines anaemia as below level of Haemoglobin in red blood shown by a lower number of functioning red blood cells [2]. The crisis in the North West and South West Regions of Cameroon has led to several negative effects on children’s living conditions. There has been an increase in malnutrition and anaemia in the South West Region and Kumba in particular. The main objective of this study was “to examine the prevalence of malnutrition and anaemia in children ≤ 5 years of age in some conflict-hit areas of Meme Division”. A descriptive cross-sectional study was conducted in 2023 from March to June. We recruited 200 children ≤ 5 years into the study from three hospitals. The regional hospital annex in Kumba, Presbyterian General Hospital Kumba and the Ntam Hospital in Kumba. Socio-demographic factors were assessed using questionnaire, nutritional status was assessed by the use anthropometric measurements and an auto haematology analyser was used to determine anaemia. The overall prevalence of malnutrition in the study area was 40.5%. The prevalence of malnutrition varied significantly (P < 0.001) with the study sites. The overall prevalence of anaemia in the study area was 70.5%. The prevalence of anaemia was not significantly associated with the study sites. The prevalence of Malnutrition and Anaemia in children ≤ 5 years of age is very high in the Kumba municipalities. This could be attributed to the ongoing crisis which has caused a lot of social migrations from rural areas to Urban areas which are safer.
基金supported by the project of the National Natural Science Foundation of China entitled“Distribution and change characteristics of construction land on slope gradient in mountainous cities of southern China”(No.41961039).
文摘In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective.
基金supported by the Department of Economics,Faculty of Economics and Management,Czech University of Life Science,Czech(2021B0002).
文摘Rural areas are crucial for a country’s sustainable economy.New strategies are needed to develop rural areas to improve the well-being of rural population and generate new job opportunities.This is especially important in countries where agricultural production accounts for a significant share of the gross product,such as Russia.In this study,we identified the key indicators of satisfaction and differences between rural and urban citizens based on their social,economic,and environmental backgrounds,and determined whether there are well-being disparities between rural and urban areas in the Stavropol Territory,Russia.We collected primary data through a survey based on the European Social Survey framework to investigate the potential differences between rural and urban areas.By computing the regional well-being index using principal component analysis,we found that there was no statistically significant difference in well-being between rural and urban areas.Results of key indicators showed that rural residents felt psychologically more comfortable and safer,assessed their family relationships better,and adhered more to traditions and customs.However,urban residents showed better economic and social conditions(e.g.,infrastructures,medical care,education,and Internet access).The results of this study imply that we can better understand the local needs,advantages,and unique qualities,thereby gaining insight into the effectiveness of government programs.Policy-makers and local authorities can consider targeted interventions based on the findings of this study and strive to enhance the well-being of both urban and rural residents.
基金the Space Application Center, Ahmedabad (ISRO) for providing field support under “Integrated studies of Himalayan Cryosphere” programthe Glaciology Group, Jawaharlal Nehru University for providing necessary support for this research+1 种基金the grants from SERB (CRG/2020/004877) and MOES/16/19/2017-RDEAS projectsthe support from ISRO/RES/4/690/21-22 project
文摘Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.
基金supported by the National Research Foundation of Korea(NRF)under the Ministry of ScienceICT&Future Planning(Basic Science Research Program[No.2021R1A5A6002853],[No.2022R1A2C3004964],[No.2022R1C1C2008126],[No.2022M3H4A1A03074093])
文摘In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment.
文摘Access to basic infrastructure and services is a factor in economic development and an important aspect in combatting social and spatial disparities. But this access is often subject to several constraints, including geographical accessibility. In this article, we aim to analyze the geographical accessibility to basic infrastructure and services in the Niakhar area, using the improved two step floating catchment area method and local spatial association indicators. The results reveal that the areas with high accessibility to health and education infrastructures and services are mainly located along the south-east and north-west gradient, while those with low accessibility are found in the south-west and north-east center. They also show high accessibility to trade services in the center of the study area.