期刊文献+
共找到2,521篇文章
< 1 2 127 >
每页显示 20 50 100
THE EVALUATION OF STRESS INTENSITY FACTORS OF PLANE CRACK FOR ORTHOTROPIC PLATE WITH EQUAL PARAMETER BY F2LFEM 被引量:3
1
作者 Fan Jie Zhang Xiaochun +1 位作者 A.Y.T. LEUNG Zhong Weifang 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期128-134,共7页
In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solutio... In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solution of an orthotropic crack problem is obtained by assimilating the problem with isotropic crack problem, and is employed as the global interpolation function in F2LFEM. In the neighborhood of crack tip of the crack plate, the fractal geometry concept is introduced to achieve the similar meshes having similarity ratio less than one and generate an infinitesimal mesh so that the relationship between the stiffness matrices of two adjacent layers is equal. A large number of degrees of freedom around the crack tip are transformed to a small set of generalized coordinates. Numerical examples show that this method is efficient and accurate in evaluating the stress intensity factor (SIF). 展开更多
关键词 plane crack orthotropic plate fractal finite element stress intensity factor
下载PDF
A WEIGHTED RESIDUAL METHOD FOR ELASTIC-PLASTIC ANALYSIS NEAR A CRACK TIP AND THE CALCULATION OF THE PLASTIC STRESS INTENSITY FACTORS
2
作者 张宁生 赵学仁 薛大为 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第12期1123-1134,共12页
In this paper, a weighted residual method for the elastic-plastic analysis near a crack tip is systematically given by taking the model of power-law hardening under plane strain condition as a sample. The elastic-plas... In this paper, a weighted residual method for the elastic-plastic analysis near a crack tip is systematically given by taking the model of power-law hardening under plane strain condition as a sample. The elastic-plastic solutions of the crack lip field and an approach based on the superposition of the nonlinear finite element method on the complete solution in the whole crack body field, to calculate the plastic stress intensity factors, are also developed. Therefore, a complete analvsis based on the calculation both for the crack tip field and for the whole crack body field is provided. 展开更多
关键词 fracture mechanics stress intensity factor weighted residual method crack tip field
下载PDF
Numerical Computation of Stress Intensity Factors for Bolt-hole Corner Crack in Mechanical Joints 被引量:3
3
作者 王立清 盖秉政 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期411-416,共6页
The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularit... The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant. 展开更多
关键词 bolt-hole comer crack contact stress intensity factor mechanical joint CLEARANCE finite element method
下载PDF
Numerical Comparison Research on the Solution of Stress Intensity Factors of Multiple Crack Problems
4
作者 Guo Zhao 《Advances in Pure Mathematics》 2020年第12期706-727,共22页
A newly developed approach without crack surface discretization for modeling 2D solids with large number of cracks in linear elastic fracture mechanics is proposed with the eigen crack opening displacement (COD) bound... A newly developed approach without crack surface discretization for modeling 2D solids with large number of cracks in linear elastic fracture mechanics is proposed with the eigen crack opening displacement (COD) boundary integral equations in this paper. The eigen COD is defined as a crack in an infinite domain under fictitious traction acting on the crack surface. Respect to the computational accuracies and efficiencies, the multiple crack problems in finite and infinite plates are solved and compared numerically using three different kinds of boundary integral equations (BIEs): 1) the dual BIEs require crack surface discretization;2) the BIEs with numerical Green’s functions (NGF) without crack surface discretization, but have to solve a complementary matrix;3) the eigen crack opening displacement (COD) BIEs in the present paper. With the concept of eigen COD, the multiple crack problems can be solved by using a conventional displacement discontinuity boundary integral equation in an iterative fashion with a small size of system matrix as that in the NGF approach, but without troubles to determine the complementary matrix. Solution of the stress intensity factors of multiple crack problems is solved and compared in some numerical examples using the above three computational algorithms. Numerical results clearly demonstrate the numerical models of eigen COD BIEs have much higher efficiency, providing a newly numerical technique for multiple crack problems. Not only the accuracy and efficiency of computation can be guaranteed, but also the overall properties and local details can be obtained. In conclusion, the numerical models of eigen COD BIEs realize the simulations for multiple crack problems with large quantity of cracks. 展开更多
关键词 Multiple crack Problems Boundary Integral Equations Eigen crack Opening Displacements Eshelby Matrix stress intensity factors
下载PDF
METHOD TO CALCULATE BENDING CENTER AND STRESS INTENSITY FACTORS OF CRACKED CYLINDER UNDER SAINT_VENANT BENDING
5
作者 汤任基 汤昕燕 《应用数学和力学》 EI CSCD 北大核心 2001年第1期71-78,共8页
Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equation... Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given. 展开更多
关键词 裂纹柱 SAint-VenAnt弯曲 弯曲中心 应力强度因
下载PDF
An analytical solution for the stress field and stress intensity factor in an infinite plane containing an elliptical hole with two unequal aligned cracks 被引量:4
6
作者 M.HAJIMOHAMADI R.GHAJAR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第8期1103-1118,共16页
The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A confo... The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A conformal mapping is proposed and combined with the complex variable method. Due to some difficulties in the calculation of the stress function, the mapping function is approximated and simplified via the applications of the series expansion. To validate the obtained solution, several examples are analyzed with the proposed method, the finite element method, etc. In addition, the effects of the lengths of the cracks and the ratio of the semi-axes of the elliptical hole(a/b) on the SIFs are studied. The results show that the present analytical solution is applicable to the SIFs for small cracks. 展开更多
关键词 complex variable conformal mapping unequal crack elliptical hole stress intensity factor(SIF)
下载PDF
Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods 被引量:3
7
作者 K. C. Nehar B. E. Hachi +1 位作者 F. Cazes M. Haboussi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第6期1051-1064,共14页
The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to an... The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors(SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method,whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials,but has to our knowledge not been used up to now for a bimaterial. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency(less time consuming and less spurious boundary effect). 展开更多
关键词 Bi-material interface crack Mixed mode stress intensity factor Displacement jump X-FEM Fatigue crack growth
下载PDF
STRESS INTENSITY FACTORS FOR A FINITE PLATE WITH AN INCLINED CRACK BY BOUNDARY COLLOCATION 被引量:3
8
作者 Xing Li Xuemei You 《Analysis in Theory and Applications》 2005年第3期258-265,共8页
In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher prec... In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher precision and less computation are reached. This method is applied to calculating the stress intensity factor for a finite plate with an inclined crack. The influence of θ (the obliquity of crack) on the stress intensity factors, as well as the number of summation terms on the stress intensity factor are studied and graphically represented. 展开更多
关键词 boundary collocation method stress intensity factor crack numerical solution
下载PDF
Simulation Research on Stress Intensity Factors of Different Crack Aspect Ratios on Hollow Axles 被引量:2
9
作者 ZHOU Suxia XIE Jilong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期766-771,共6页
Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can... Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can initiate from the notch and propagate to failure. It is noted that the stress intensity factor is the control parameter of the crack propagating, for the purpose of getting the more exact propagation characteristics, the stress intensity factor is studied mainly. The service loads of hollow axles are defined, and the stress distribution of hollow axles is obtained according to the load spectrum. The semi-ellipse crack configuration is defined with three parameters: the aspect ratio, the relative depth and the relative location along the crack front. Quarter point 20-node isoparametric degenerate singular elements are used for the region near the crack tip. The finite element model of crack extension of hollow axle is created, and the crack front is dispersed which can realize orthogonal extension. Based on this the stress intensity factors of crack front were calculated, and the distribution rules of the stress intensity factors of different initial crack shapes are obtained. The conclusions are compared with that of the analytic method and they agree with each other very well, and the calculating results show that there is a close relationship between the stress intensity factor and the initial crack shape. For a round crack the stress intensity factor at the surface point increases faster than the one at the center point with the crock propagation. However, for a narrow crack, the results are in contrast with that of a round one. So, all the cracks with different shapes propagate toward to a similar shape, and they grow at this shape to end. The study may contribute to the crack propagate characteristics research. 展开更多
关键词 hollow axle surface crack propagation stress intensity factor finite element
下载PDF
Finite element simulation of stress intensity factors in elastic-plastic crack growth 被引量:3
10
作者 ALSHOAIBI Abdulnaser M ARIFFIN Ahmad Kamal 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1336-1342,共7页
A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement usin... A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions. Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation. 展开更多
关键词 crack propagation Nodal displacement stress intensity factor Adaptive mesh Finite element method (FEM)
下载PDF
STRESS INTENSITY FACTOR OF AN ANTI-PLANE CRACK PARALLEL TO THE WEAK/MICRO-DISCONTINUOUS INTERFACE IN A BI-FGM COMPOSITE 被引量:2
11
作者 Yong-Dong Li Wei Tan Kang Yong Lee 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第1期34-43,共10页
The problem considered is a mode Ⅲ crack lying parallel to the interface of an exponential-type functional graded material (FGM) strip bonded to a linear-type FGM substrate with infinite thickness. By applying the ... The problem considered is a mode Ⅲ crack lying parallel to the interface of an exponential-type functional graded material (FGM) strip bonded to a linear-type FGM substrate with infinite thickness. By applying the Fourier integral transform, the problem was reduced as a Cauchy singular integral equation with an unknown dislocation density function. The collocation method based on Chebyshev polynomials proposed by Erdogan and Gupta was used to solve the singular integral equation numerically. With the numerical solution, the effects of the geometrical and physical parameters on the stress intensity factor (SIF) were analyzed and the following conclusions were drawn: (a) The region affected by the interface or free surface varies with the material rigidity, and higher material rigidity will lead to bigger affected region. (b) The SIF of the crack in the affected region and parallel to the micro-discontinuous interface is lower than those of the weak discontinuous cases. Reducing the weak-discontinuity of the interface will be beneficial to decrease the SIF of the interface-parallel crack in the region affected by the interface. (c) The effect of the free surface on SIF is more remarkable than that of the interface, and the latter is still more notable than that of the material rigidity. When the effects of the interface and free surface are fixed, increase of the material rigidity will enhance the value of SIF. 展开更多
关键词 bi-FGM composite mode crack stress intensity factor weak/mico discontinuity the Cauchy singular integral equation
下载PDF
Modeling of Fatigue Crack Growth Closure Considering the Integrative Effect of Cyclic Stress Ratio,Specimen Thickness and Poisson's Ratio 被引量:1
12
作者 LIU Jiantao DU Pingan LIU Xiaobao DU Qiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期816-825,共10页
Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since t... Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since the FCG process is affected by various factors,no universal model exists due to the complexity of the mechanisms.Most of the existing models are obtained by fitting the experimental data and could hardly describe the integrative effect of most existing factors simultaneously.In order to account for the integrative effect of specimen parameters,material property and loading conditions on FCG process,a new model named integrative influence factor model(IIF) is proposed based on the plasticity-induced crack closure theory.Accordingly to the predictions of crack opening ratio(γ) and effective stress intensity factor range ratio(U) with different material under various loading conditions,predictions of γ and U by the IIF model are completely identical to the theoretical results from the plane stress state to the plane strain state when Poisson's ratio equals 1/3.When Poisson's ratio equals 0.3,predictions of γ and U by the IIF model are larger than the predictions by the existing model,and more close to the theoretical results.In addition,it describes the influence of R ratios on γ and U effectively in the whole region from-1.0 to 1.0.Moreover,several sets of test data of FCG rates in 5 kinds of aluminum alloys with various specimen thicknesses under different loading conditions are used to validate the IIF model,most of the test data are situated on the predicted curves or between the two curves that represent the specimen with different thicknesses under the same stress ratio.Some of the test data slightly departure from the predictions by the IIF model due to the surface roughness and errors in measurement.Besides,based on the analysis of the physical rule of crack opening ratios,a relative thickness of specimen is defined to describe the influence of material property,specimen thickness and so forth on FCG characteristics conveniently.In conclusion,the relative thickness of specimen simplifies the expression of FCG characteristic and provides a general parameter to analyze the fatigue characteristics of different materials with various thicknesses under different loading conditions.The IIF model describes the integrative effect of existing influence factors explicitly and quantitatively,and provides a helpful tool for fatigue property estimation of practical component and experiment design. 展开更多
关键词 fatigue crack growth crack opening stress cyclic stress ratio constraint factor Poisson's ratio stress intensity factor
下载PDF
Mathematical Modelling and 3D FEM Analysis of the Influence of Initial Stresses on the ERR in a Band Crack’s Front in the Rectangular Orthotropic Thick Plate 被引量:2
13
作者 Arzu Turan Dincel Surkay DAkbarov 《Computers, Materials & Continua》 SCIE EI 2017年第3期249-270,共22页
This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initial... This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes.The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located.After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal forces and the ERR caused with this additional loading is studied.The corresponding boundary value problem is formulated within the scope of the so-called 3D linearized theory of elasticity which allows the initial stress on the values of the ERR to be taken into consideration.Numerical results on the influence of the initial stress,anisotropy properties of the plate material,the crack’s length and its distance from the face planes of the plate on the values of the ERR,are presented and discussed.In particular,it is established that for the relatively greater length of the crack’s band,the initial stretching of the plate causes a decrease,but the initial compression causes an increase in the values of the ERR. 展开更多
关键词 Band crack energy release rate stress intensity factor initial stress orthotropic material rectangular plate 3D FEM
下载PDF
Compensation of stress intensity factors in hollow cylinders containing several cracks under torsion by electro-elastic coating 被引量:1
14
作者 M. KARIMI A. GHASSEMI +1 位作者 A. ATRIAN M. VAHABI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1335-1360,共26页
In this article, a formulation for a hollow cylinder reinforced with an electroelastic layer is investigated. The hollow cylinder and its electro-elastic coating are under the Saint-Venant torsional loading. First, th... In this article, a formulation for a hollow cylinder reinforced with an electroelastic layer is investigated. The hollow cylinder and its electro-elastic coating are under the Saint-Venant torsional loading. First, the solution to the problem containing a Volterra-type screw dislocation is obtained by using the Fourier transform. The problem is then reduced to a set of Cauchy singular integral equations by the distributed dislocation method. Finally, several examples are presented to show the effect of the electro-elastic coating on the reduction of the stress intensity factors at the crack tips. 展开更多
关键词 HOLLOW cylinder electro-elastic COATING stress intensity factor multiple arbitrarily oriented cracks Saint-Venant TORSION electric displacement
下载PDF
The dynamic stress intensity factor analysis of adhesively bonded material interface crack with damage under shear loading 被引量:1
15
作者 蔡艳红 陈浩然 +2 位作者 唐立强 闫澄 江莞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第11期1517-1526,共10页
This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the i... This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters. 展开更多
关键词 dynamic stress intensity factor interface crack adhesively bonded material DAMAGE singular integral eouation
下载PDF
Solution of stress intensity factors of multiple cracks in plane elasticity with eigen COD formulation of boundary integral equation 被引量:1
16
作者 郭钊 马杭 《Journal of Shanghai University(English Edition)》 CAS 2011年第3期173-179,共7页
The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of... The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of boundary integral equation is proposed in this paper, together with the solution procedures for multiple crack problems in plane elasticity. With the proposed approach, the multiple crack problems can be solved with the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix as that in the numerical Green’s function (NGF) approach but without the trouble to determine the complementary solutions since the standard boundary element discretization on the crack surface is no longer required with the proposed approach. Some numerical examples computing the stress intensity factors are presented and compared with those in literature to show the accuracy and the effectiveness of the proposed approach. 展开更多
关键词 crack opening displacement (COD) multiple cracks stress intensity factor boundary integral equation ITERATION
下载PDF
Comprehensive investigation of stress intensity factors in rotating disks containing three-dimensional semi-elliptical cracks 被引量:1
17
作者 M.FAKOOR S.M.N.GHOREISHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第11期1565-1578,共14页
Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comp... Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comprehensive study of stress intensity factors (SIFs) in rotating disks containing three-dimensional (3D) semi-elliptical cracks subjected to different working conditions is carried out. The effects of mechanical prop- erties, rotational velocity, and orientation of cracks on SIFs in rotating disks under cen- trifugal loading are investigated. Also, the effects of using composite patches to reduce SIFs in rotating disks are studied. The effects of patching design variables such as mechanical properties, thickness, and ply angle are investigated separately. The modeling and analytical procedure are verified in comparison with previously reported results in the literature. 展开更多
关键词 stress intensity factor (SIF) semi-elliptical crack rotating disk finite ele-ment analysis (FEA)
下载PDF
STUDY ON DYNAMIC STRESS INTENSITY FACTORS OF DISK WITH A RADIAL EDGE CRACK SUBJECTED TO EXTERNAL IMPULSIVE PRESSURE 被引量:1
18
作者 Chen Aijun 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期41-49,共9页
A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under ... A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier- Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0. 展开更多
关键词 circular disk cracks dynamic stress intensity factors dynamic weight function Fourier-Bessel series
下载PDF
THE ANALYSIS OF DYNAMIC STRESS INTENSITY FACTOR FOR SEMI-CIRCULAR SURFACE CRACK USING TIME-DOMAIN BEM FORMULATION 被引量:1
19
作者 ZHONG Ming(钟明) +1 位作者 ZHANG Yong-yuan(张永元) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第11期1344-1351,共8页
The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric sin... The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric singular elements were used, and the DSIF for a semi-circular surface crack was firstly calculated based on displacement equation using the time-domain BEM formulation. The new scheme to determine the time step was brought forward. By the dynamic analysis program of time-domain BEM compiled by its, several numerical examples are presented, which demonstrate the unconditional stability and high accuracy of time-domain BEM applied to 3-D elastodynamic crack problems. 展开更多
关键词 time-domain BEM 3-D elastodynamic crack problems dynamic stress intensity factor
下载PDF
Analysis of dynamic stress intensity factors of three-point bend specimen containing crack
20
作者 陈爱军 曹俊俊 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第2期203-210,共8页
A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen c... A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally~ the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied. 展开更多
关键词 crack dynamic stress intensity factor weight function method three-pointbending specimen loading rate
下载PDF
上一页 1 2 127 下一页 到第
使用帮助 返回顶部