High water consumption and inefficient irrigation management in the agriculture sector of the middle and lower reaches of the Amu Darya River Basin(ADRB)have significantly influenced the gradual shrinking of the Aral ...High water consumption and inefficient irrigation management in the agriculture sector of the middle and lower reaches of the Amu Darya River Basin(ADRB)have significantly influenced the gradual shrinking of the Aral Sea and its ecosystem.In this study,we investigated the crop water consumption in the growing seasons and the irrigation water requirement for different crop types in the lower ADRB during 2004–2017.We applied the FAO Penman–Monteith method to estimate reference evapotranspiration(ET0)based on daily climatic data collected from four meteorological stations.Crop evapotranspiration(ETc)of specific crop types was calculated by the crop coefficient.Then,we analyzed the net irrigation requirement(NIR)based on the effective precipitation with crop water requirements.The results indicated that the lowest monthly ET0 values in the lower ADRB were found in December(18.2 mm)and January(16.0 mm),and the highest monthly ET0 values were found in June and July,with similar values of 211.6 mm.The annual ETc reached to 887.2,1002.1,and 492.0 mm for cotton,rice,and wheat,respectively.The average regional NIR ranged from 514.9 to 715.0 mm in the 10 Irrigation System Management Organizations(UISs)in the study area,while the total required irrigation volume for the whole region ranged from 4.2×109 to 11.6×109 m3 during 2004–2017.The percentages of NIR in SIW(surface irrigation water)ranged from 46.4%to 65.2%during the study period,with the exceptions of the drought years of 2008 and 2011,in which there was a significantly less runoff in the Amu Darya River.This study provides an overview for local water authorities to achieve optimal regional water allocation in the study area.展开更多
The concept of crop water requirements is discussed, based on which the calculation modelof crop water requirements is established. In light with crop, soil and meteorological data. the cropwater requirements of majo...The concept of crop water requirements is discussed, based on which the calculation modelof crop water requirements is established. In light with crop, soil and meteorological data. the cropwater requirements of major crops in sub-humid and send-arid dryland farming areas of northernChina. including wheat maize , cotton. millet, soybean, sweet potato and potato, are calculated, andthe patterns of crop water requirements of these crops are revealed and discussed in this paper.展开更多
The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotr...The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotranspiration and crop water demand were analyzed in different regions, together with crop water demand and deficit of spring highland barley under different precipitation frequencies. Results showed that precipitation trends during growth stages did not benefit the growth of spring highland barley. The crop coefficient of spring highland barley in Tibet was 0.87 and crop water demand was 389.0 ram. In general, a water deficit was found in Tibet, because precipitation was lower than water consumption of spring highland barley. The most severe water deficit were in the jointing to heading stage and the heading to wax ripeness stage, which are the most important growth stages for spring highland barley; water deficit in these two stages would be harmful to the yield. Water deficit showed different characteristics in different regions. In conclusion, irrigation systems may be more successful if based on an analysis of water deficit within different growth stages and in different regions.展开更多
The definition and classification of field evapotranspiration was discussed, based on which the calculation model for field evapotranspiration was established. Based on crop, soil measurements and mean climatic data i...The definition and classification of field evapotranspiration was discussed, based on which the calculation model for field evapotranspiration was established. Based on crop, soil measurements and mean climatic data in 1950-1980, mean field water surplus or deficit on climatic, crop and cropland basis in dryland of northern China was calculated, and the pattern of field water surplus or deficit was analyzed and discussed in this paper.展开更多
Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water de...Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water demand.Iran,with large climatic variability,is experiencing a serious water crisis due to limited water resources and inefficient agriculture.In order to overcome the issue of uneven distribution of weather stations,gridded Climatic Research Unit(CRU)data was applied to analyze the changes in potential evapotranspiration(PET),effective precipitation(EFFPRE)and WREQ.Validation of data using in situ observation showed an acceptable performance of CRU in Iran.Changes in PET,EFFPRE and WREQ were analyzed in two 30-a periods 1957-1986 and 1987-2016.Comparing two periods showed an increase in PET and WREQ in regions extended from the southwest to northeast and a decrease in the southeast,more significant in summer and spring.However,EFFPRE decreased in the southeast,northeast,and northwest,especially in winter and spring.Analysis of annual trends revealed an upward trend in PET(14.32 mm/decade)and WREQ(25.50 mm/decade),but a downward trend in EFFPRE(-11.8 mm/decade)over the second period.Changes in PET,EFFPRE and WREQ in winter have the impact on the annual trend.Among climate variables,WREQ showed a significant correlation(r=0.59)with minimum temperature.The increase in WREQ and decrease in EFFPRE would exacerbate the agricultural water crisis in Iran.With all changes in PET and WREQ,immediate actions are needed to address the challenges in agriculture and adapt to the changing climate.展开更多
Danghara,a major food production area in southern Tajikistan,is currently suffering from the impact of rapid climate change and intensive human activities.Assessing the future impact of climate change on crop water re...Danghara,a major food production area in southern Tajikistan,is currently suffering from the impact of rapid climate change and intensive human activities.Assessing the future impact of climate change on crop water requirements(CWRs)for the current growing period and defining the optimal sowing date to reduce future crop water demand are essential for local/regional water and food planning.Therefore,this study attempted to analyze possible future climate change effects on the water requirements of major crops using the statistical downscaling method in the Danghara District to simulate the future temperature and precipitation for two future periods(2021-2050 and 2051-2080),under three representative concentration pathways(RCP2.6,RCP4.5,and RCP8.5)according to the CanESM2 global climate model.The water footprint(WFP)of major crops was calculated as a measure of their CWRs.The increased projection of precipitation and temperature probably caused an increase in the main crop’s WFP for the current growing period,which was mainly due to the green water(GW)component in the long term and a decrease in the blue water(BW)component during the second future period,except for cotton,where all components were predicted to remain stable.Under three scenarios for the two future potato and winter wheat decreased from 5.7%to 4.8%and 3.4%to 2.2%,respectively.Although the WFP of cotton demonstrated a stable increase,according to the optimal sowing date,adecrease in irrigation demand or Bw was expected.The results of our study might be useful fordeveloping a new strategy related to irrigation systems and could help to find a balance betweenwater and food for environmental water demands and human use.展开更多
Agriculture faces risks due to increasing stress from climate change,particularly in semi-arid regions.Lack of understanding of crop water requirement(CWR)and irrigation water requirement(IWR)in a changing climate may...Agriculture faces risks due to increasing stress from climate change,particularly in semi-arid regions.Lack of understanding of crop water requirement(CWR)and irrigation water requirement(IWR)in a changing climate may result in crop failure and socioeconomic problems that can become detrimental to agriculture-based economies in emerging nations worldwide.Previous research in CWR and IWR has largely focused on large river basins and scenarios from the Coupled Model Intercomparison Project Phase 3(CMIP3)and Coupled Model Intercomparison Project Phase 5(CMIP5)to account for the impacts of climate change on crops.Smaller basins,however,are more susceptible to regional climate change,with more significant impacts on crops.This study estimates CWRs and IWRs for five crops(sugarcane,wheat,cotton,sorghum,and soybean)in the Pravara River Basin(area of 6537 km^(2))of India using outputs from the most recent Coupled Model Intercomparison Project Phase 6(CMIP6)General Circulation Models(GCMs)under Shared Socio-economic Pathway(SSP)245 and SSP585 scenarios.An increase in mean annual rainfall is projected under both scenarios in the 2050s and 2080s using ten selected CMIP6 GCMs.CWRs for all crops may decline in almost all of the CMIP6 GCMs in the 2050s and 2080s(with the exceptions of ACCESS-CM-2 and ACCESS-ESM-1.5)under SSP245 and SSP585 scenarios.The availability of increasing soil moisture in the root zone due to increasing rainfall and a decrease in the projected maximum temperature may be responsible for this decline in CWR.Similarly,except for soybean and cotton,the projected IWRs for all other three crops under SSP245 and SSP585 scenarios show a decrease or a small increase in the 2050s and 2080s in most CMIP6 GCMs.These findings are important for agricultural researchers and water resource managers to implement long-term crop planning techniques and to reduce the negative impacts of climate change and associated rainfall variability to avert crop failure and agricultural losses.展开更多
Water is the major limiting factor for crop production. A lot of water resources have been exploited for irrigation purpose. Therefore, the objective of this review paper was to collect information on cabbage water re...Water is the major limiting factor for crop production. A lot of water resources have been exploited for irrigation purpose. Therefore, the objective of this review paper was to collect information on cabbage water requirement, irrigation scheduling and water use efficiency by triangulating different literatures on the topic. Nowadays on worldwide there is a water-shortage, accordingly it is necessary to adopt water saving agriculture as a counter measure as well as efficient use of irrigation water is becoming increasingly important. In growing crop, irrigation scheduling is a critical management input to ensure optimum soil moisture status for proper plant growth and development as well as for optimum yield, water use efficiency and economic benefits. Thus according reviewed literatures on average twice a week irrigation scheduling and 2.57 - 5.81 mm/day of crop water requirement is more visible for cabbage production. In addition, climate models were reviewed in detail in this paper CROPWAT 8.0 and DSSAT reproduce acceptably the unimodal and bimodal shapes of the annual variation of rainfall and temperature respectively;there is a time shift between the observed and simulated peaks. Therefore it is essential to develop irrigation scheduling strategies under local climatic conditions to utilize scarce water resources efficiently and effectively for crop production.展开更多
A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water...A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.展开更多
Accurate estimation of crop evapotranspiration(ETc) and soil water balance, which is vital for optimizing water management strategy in crop production, can be performed by simulation. But existing software has many de...Accurate estimation of crop evapotranspiration(ETc) and soil water balance, which is vital for optimizing water management strategy in crop production, can be performed by simulation. But existing software has many deficiencies, including complex operation, limited scalability, lack of batch processing, and a single ETc model. Here we present simET, an open-source software package written in the R programming language. Many concepts involved in crop ETc simulation are condensed into functions in the package. It includes three widely used crop ETc models built on these functions: the single-crop coefficient,double-crop coefficient, and Shuttleworth–Wallace models, along with tools for preparing model data and comparing estimates. SimET supports ETc simulation in crops with repeated growth cycles such as alfalfa, a perennial forage crop that is cut multiple times annually.展开更多
Climate warming is recognized as an objective reality all over the world. The typical characteristics of this warming include rise in soil and air temperature, more frequent and intensified extreme weather events (dro...Climate warming is recognized as an objective reality all over the world. The typical characteristics of this warming include rise in soil and air temperature, more frequent and intensified extreme weather events (droughts, floods, storms) that especially became apparent in the recent decade, and, finally, change in precipitation patterns. In the arid areas, to which the Aral Sea basin, the research object, belongs too, more frequent dry years accompanied by decreased river water availability and precipitation and increased aridity of air are the most critical. This has a negative effect on agriculture in the basin’s countries, which is a source of livelihoods for almost half of the population. Most researchers studying the climate change effects note that the temperature rise leads to increased evaporation and, hence, to growth of water demands for irrigation of crops. The analysis made for the Fergana Valley on the basis of potential evapotranspiration proves an increase in moisture deficit during growing season through the rise in air temperature. According to REMO modeling of climatic scenarios until 2100, evapotranspiration would increase significantly by 4 - 8 mm/day in summer months. However, it is demonstrated also that the thermal potential of given area would be changing. The growth of the thermal potential causes that the sum of effective temperatures is reached in shorter period of time and the crops can be sown earlier. This, first, would reduce the crop development phases and the growing season as a whole, and, consequently, would decrease the total water use. For example, for the mid-season cotton, the growing season would become 30 days shorter and the water use would decrease by 100 mm by 2100. The thermal patterns should be considered as the basis for crop rotation and, hence, for water planning.展开更多
Crop models often require extensive input data sets to realistically simulate crop growth. Development of such input data sets can be difficult for some model users. The objective of this study was to evaluate the imp...Crop models often require extensive input data sets to realistically simulate crop growth. Development of such input data sets can be difficult for some model users. The objective of this study was to evaluate the importance of variables in input data sets for crop modeling. Based on published hybrid performance trials in eight Texas counties, we developed standard data sets of 10-year simulations of maize and sorghum for these eight counties with the ALMANAC (Agricultural Land Management Alternatives with Numerical Assessment Criteria) model. The simulation results were close to the measured county yields with relative error only 2.6% for maize, and - 0.6% for sorghum. We then analyzed the sensitivity of grain yield to solar radiation, rainfall, soil depth, soil plant available water, and runoff curve number, comparing simulated yields to those with the original, standard data sets. Runoff curve number changes had the greatest impact on simulated maize and sorghum yields for all the counties. The next most critical input was rainfall, and then solar radiation for both maize and sorghum, especially for the dryland condition. For irrigated sorghum, solar radiation was the second most critical input instead of rainfall. The degree of sensitivity of yield to all variables for maize was larger than for sorghum except for solar radiation. Many models use a USDA curve number approach to represent soil water redistribution, so it will be important to have accurate curve numbers, rainfall, and soil depth to realistically simulate yields.展开更多
Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objecti...Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Landscape Modeling System (PALMS) model to simulate soil water content throughout the growing season for several years and for three major soil series of the semiarid Texas Southern High Plains (SHP). Accuracy of the model was evaluated by comparing measured and calculated values of soil water content and using root mean squared difference (RMSD), squared bias (SB), squared difference between standard deviations (SDSD), and lack of correlation weighted by the standard deviation (LCS). Different versions of the model were obtained by modifying soil hydraulic properties, including saturated hydraulic conductivity (Ks) and residual (θr) and saturated (θs) soil volumetric water content, which were calculated using Rosetta pedotransfer functions. These modifications were combined with updated routines of the soil water solver in PALMS to account for rapid infiltration into dry soils that often occur in the SHP. Field studies were conducted across a wide range of soil and water conditions in the SHP. Soil water content was measured by neutron attenuation and gravimetrically throughout the growing seasons at each location to compare absolute values and the spatial distribution of soil water with PALMS calculated values. Use of Rosetta calculated soil hydraulic properties improved PALMS soil water calculation from 1% - 13% of measured soil volumetric water content (θv) depending on soil type. Large-scale models such as PALMS have the potential to more realistically represent management effects on soil water availability in agricultural fields. Improvements in PALMS soil water calculations indicated that the model may be useful to assess long-term implications of management practices designed to conserve irrigation water and maximize the profitability of dryland and irrigated cropping systems in the SHP.展开更多
Development and judicious management of available water resources play a key role for economic upliftment of any region. The agricultural pattern and social and demographic status in the upper basin of the Dulung Nala...Development and judicious management of available water resources play a key role for economic upliftment of any region. The agricultural pattern and social and demographic status in the upper basin of the Dulung Nala Stream (a tributary of the Subarnarekha River) in the western part of the State of West Bengal, India, reveals growing demand of water in the basin. The paper reports different management plans involving different types of water harvesting structures (and associated different types of water distribution systems) and different crop combinations and with benefit/cost ratios varying from 1.3 to 11.2 for the basin. The study points out that the judicious choice of both the water harvesting structure as well as the water distribution system is important. Proper planning of crop pattern is also to be emphasized for reaping maximum benefit. It further emphasizes that cost- benefit ratio cannot solely govern the choice of structure and that maximum utilization of catchmental water and thus enhancement of agricultural output (and also economic return from the catchment) i.e. quantum of benefit is also important. The water harvesting structures proposed in this study can be implemented in other semi-arid regions of India having almost the same climatic and socio-economic conditions.展开更多
Crop coefficients (Kc) of sugar beet were determined for accurate calculation of water requirements (CWR) and better irrigation water management. Three irrigation treatments were used during two seasons to measure...Crop coefficients (Kc) of sugar beet were determined for accurate calculation of water requirements (CWR) and better irrigation water management. Three irrigation treatments were used during two seasons to measure actual crop water use (ETc) under no soil stress treatment using gravimetric sampling. In the second season (SS), the method was modified to target 8 temporal points during crop growth for smooth calculation of ETc under sufficient moisture supply to avoid the distortion that was created by the continuous gravimetric sampling after, before and during each irrigation cycle on the experimental plots. Water was stopped when each targeted sampling point was reached using large plots where intensive sampling continues until the crop reaches severe water stress or permanent wilting point (PWP). The actual crop water use was extracted from the soil moisture depletion curve which allowed the identification of two clear segments. The first segment indicated crop water use during no water stress while the change of the slope indicated the beginning of the water stress. The reference crop evapotranspiration (ET0) was determined on daily basis using appropriate weather data that coincides with the ETc measurement and consequently the crop Kc were calculated. The results showed that the method used during the SS is easy and provides a better understanding of actual crop water use and better estimation of crop Kc. The calculated 10-day Kc values for sugar beet under heavy cracking clay soil conditions were: 0.46, 0.49, 0.53 and 0.60; for the initial stage: 0.69, 0.78, 0.88 and 0.97; for the development stage: 1.05, 1.11, 1.13, 1.11 and 1.04; for mid-season stage and for late season stage: 0.92, 0.74 and 0.60. Yield and other sugar related parameters were also presented for the two seasons.展开更多
Under global climate change background,using daily meteorological data at Liangping ground meteorological station during 1961- 2012,we calculated crop water requirement and net irrigation water requirement during rice...Under global climate change background,using daily meteorological data at Liangping ground meteorological station during 1961- 2012,we calculated crop water requirement and net irrigation water requirement during rice growth period in Liangping County,and analyzed its climate tendency rate. Results showed that climate tendency rate of crop water requirement during growth period of rice was only- 0. 007 mm /10 a; climate tendency rate of rainfall was- 0. 06 mm /10 a,but interannual change was relatively larger; climate tendency rate of net irrigation water requirement was 0. 011 mm /10 a. In the years when drought occurred,such as 2006 and 2011,both rice water requirement and net irrigation water requirement in Liangping were greatly higher than means over the years. Therefore,we should focus on drought pre-warning and risk management improving drought disaster prevention in Liangping in the future.展开更多
The University of California, Davis and the California Department of Water Resources have developed a weather generator application program “SIMETAW” to simulate weather data from climatic records and to estimate re...The University of California, Davis and the California Department of Water Resources have developed a weather generator application program “SIMETAW” to simulate weather data from climatic records and to estimate reference evapotranspiration (ETo) and crop evapotranspiration (ETc) with the generated simulation data or with observed data. A database of default soil depth and water holding characteristics, effective crop rooting depths, and crop coefficient (Kc) values to convert ETo to ETc are input into the program. After calculating daily ETc, the input and derived data are used to determine effective rainfall and to generate hypothetical irrigation schedules to estimate the seasonal and annual evapotranspiration of applied water (ETaw), where ETaw is the net amount of irrigation water needed to produce a crop. in this paper, we will discuss the simulation model and how it determines ETaw for use in water resources planning.展开更多
The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily s...The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily soil water balance and determine crop evapotranspiration (ETo), evapotranspiration of applied water (ETaw), and applied water (AW) for use in California water resources planning. ETaw is a seasonal estimate of the water needed to irrigate a crop assuming 100% irrigation efficiency. The model accounts for soils, crop coefficients, rooting depths, seepage, etc. that influence crop water balance. It provides spatial soil and climate information and it uses historical crop and land-use category information to provide seasonal water balance estimates by combinations of detailed analysis unit and county (DAU/County) over Califomia. The result is a large data base of ETc and ETaw that will be used to update information in the new California Water Plan (CWP). The application uses the daily climate data, i.e., maximum (Tx) and minimum (Tn) temperature and precipitation (Pcp), which were derived from monthly USDA-NRCS PRISM data (PRISM Group 2011) and daily US National Climate Data Center (NCDC) climate station data to cover California on a 4 kmx4 km change grid spacing. The application uses daily weather data to determine reference evapotranspiration (ETo), using the Hargreaves-Samani (HS) equation (Hargreaves and Samani 1982, 1985). Because the HS equation is based on temperature only, ETo from the HS equation were compared with CIMIS ETo at the same locations using available CIMIS data to determine correction factors to estimate CIMIS ETo from the HS ETo to account for spatial climate differences. CaI-SIMETAW also employs near real-time reference evapotranspiration (ETo) information from Spatial CIMIS, which is a model that combines weather station data and remote sensing to provide a grid of ETo information. A second database containing the available soil water holding capacity and soil depth information for all of California was also developed from the USDA-NRCS SSURGO database. The Cal-SIMETAW program also has the ability to generate daily weather data from monthly mean values for use in studying climate change scenarios and their possible impacts on water demand in the state. The key objective of this project is to improve the accuracy of water use estimates for the California Water Plan (CWP), which provides a comprehensive report on water supply, demand, and management in California. In this paper, we will discuss the model and how it determines ETaw for use in water resources planning.展开更多
Understanding crop water requirements(CWR)in semi-arid region is essential for better irrigation practices,scheduling and efficient use of water since the water supply through rainfall is limited.This paper estimated ...Understanding crop water requirements(CWR)in semi-arid region is essential for better irrigation practices,scheduling and efficient use of water since the water supply through rainfall is limited.This paper estimated the crop reference and actual evapotranspiration(Eto and ETc)respectively and the irrigation water requirement of rice(Oryza sativa L.)in Benin’s sub-basin of Niger River(BSBNR)of west Africa,using CROPWAT model.The long recorded climatic data,crop and soil data from 1942 to 2012 were computed with the Cropwat model which is based on the United Nations’Food and Agriculture Organization(FAO)paper number 56(FAO56).The Penman-Monteith method was used to estimate ETo.Crop coefficients(Kc)from the phenomenological stages of rice were applied to adjust and estimate the actual evapotranspiration ETc through a water balance of the irrigation water requirements(IR).The results showed the BSBNR annual reference evapotranspiration(ETo)was estimated at 1967 mm.The lowest monthly value of ETo of 123 mm,was observed in August month,middle of the rainy season while the highest value 210 mm was observed in March within dry season.The crop evapotranspiration ETc and the crop irrigation requirements were estimated at 651 mm and 383 mm,respectively in rainy season and 920 mm and 1148 mm,respectively within a dry season.Irrigation projects of these seasons can then be scheduled for water use efficiency based on these findings.展开更多
基金This study was supported by the International Cooperation Project of National Natural Science Foundation of China(41761144079)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA20060301)+2 种基金the State's Key Project of Research and Development Plan(2017YFC0404501),the International Partnership Program of Chinese Academy of Sciences(131551KYSB20160002)the project of the Research Center of Ecology and Environment in Central Asia(Y934031)a grant from the Regional Collaborative Innovation Project of Xinjiang Uygur Autonomous Region(2020E01010).
文摘High water consumption and inefficient irrigation management in the agriculture sector of the middle and lower reaches of the Amu Darya River Basin(ADRB)have significantly influenced the gradual shrinking of the Aral Sea and its ecosystem.In this study,we investigated the crop water consumption in the growing seasons and the irrigation water requirement for different crop types in the lower ADRB during 2004–2017.We applied the FAO Penman–Monteith method to estimate reference evapotranspiration(ET0)based on daily climatic data collected from four meteorological stations.Crop evapotranspiration(ETc)of specific crop types was calculated by the crop coefficient.Then,we analyzed the net irrigation requirement(NIR)based on the effective precipitation with crop water requirements.The results indicated that the lowest monthly ET0 values in the lower ADRB were found in December(18.2 mm)and January(16.0 mm),and the highest monthly ET0 values were found in June and July,with similar values of 211.6 mm.The annual ETc reached to 887.2,1002.1,and 492.0 mm for cotton,rice,and wheat,respectively.The average regional NIR ranged from 514.9 to 715.0 mm in the 10 Irrigation System Management Organizations(UISs)in the study area,while the total required irrigation volume for the whole region ranged from 4.2×109 to 11.6×109 m3 during 2004–2017.The percentages of NIR in SIW(surface irrigation water)ranged from 46.4%to 65.2%during the study period,with the exceptions of the drought years of 2008 and 2011,in which there was a significantly less runoff in the Amu Darya River.This study provides an overview for local water authorities to achieve optimal regional water allocation in the study area.
文摘The concept of crop water requirements is discussed, based on which the calculation modelof crop water requirements is established. In light with crop, soil and meteorological data. the cropwater requirements of major crops in sub-humid and send-arid dryland farming areas of northernChina. including wheat maize , cotton. millet, soybean, sweet potato and potato, are calculated, andthe patterns of crop water requirements of these crops are revealed and discussed in this paper.
基金supported by the Innovation Program of Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (201003013)the National Basic Research Program of China(2010CB951702)
文摘The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotranspiration and crop water demand were analyzed in different regions, together with crop water demand and deficit of spring highland barley under different precipitation frequencies. Results showed that precipitation trends during growth stages did not benefit the growth of spring highland barley. The crop coefficient of spring highland barley in Tibet was 0.87 and crop water demand was 389.0 ram. In general, a water deficit was found in Tibet, because precipitation was lower than water consumption of spring highland barley. The most severe water deficit were in the jointing to heading stage and the heading to wax ripeness stage, which are the most important growth stages for spring highland barley; water deficit in these two stages would be harmful to the yield. Water deficit showed different characteristics in different regions. In conclusion, irrigation systems may be more successful if based on an analysis of water deficit within different growth stages and in different regions.
基金The national key research project: Field water balance and its regulation techniques, water potential productivity and its prope
文摘The definition and classification of field evapotranspiration was discussed, based on which the calculation model for field evapotranspiration was established. Based on crop, soil measurements and mean climatic data in 1950-1980, mean field water surplus or deficit on climatic, crop and cropland basis in dryland of northern China was calculated, and the pattern of field water surplus or deficit was analyzed and discussed in this paper.
文摘Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water demand.Iran,with large climatic variability,is experiencing a serious water crisis due to limited water resources and inefficient agriculture.In order to overcome the issue of uneven distribution of weather stations,gridded Climatic Research Unit(CRU)data was applied to analyze the changes in potential evapotranspiration(PET),effective precipitation(EFFPRE)and WREQ.Validation of data using in situ observation showed an acceptable performance of CRU in Iran.Changes in PET,EFFPRE and WREQ were analyzed in two 30-a periods 1957-1986 and 1987-2016.Comparing two periods showed an increase in PET and WREQ in regions extended from the southwest to northeast and a decrease in the southeast,more significant in summer and spring.However,EFFPRE decreased in the southeast,northeast,and northwest,especially in winter and spring.Analysis of annual trends revealed an upward trend in PET(14.32 mm/decade)and WREQ(25.50 mm/decade),but a downward trend in EFFPRE(-11.8 mm/decade)over the second period.Changes in PET,EFFPRE and WREQ in winter have the impact on the annual trend.Among climate variables,WREQ showed a significant correlation(r=0.59)with minimum temperature.The increase in WREQ and decrease in EFFPRE would exacerbate the agricultural water crisis in Iran.With all changes in PET and WREQ,immediate actions are needed to address the challenges in agriculture and adapt to the changing climate.
基金supported by the National Natural Science Foundation of China(41761144079)the State's Key Project of Researchand Development Plan(2017YFC404501)+4 种基金the CAS Interdisplinary Imnnovation Team(JCTD201920)the Strategic Priority Research Program of the Chinese Academy of Sciences,the Pan-Third Pole Environment Study for a Green Silk Road(XDA20060303)the International Partneship Program of the Chinese Aademy of Sciences(131551KYSB20160002)the CAS Research Center for Ecologyand Environment of Central Asia(Y934031)the Regional Collaborative Innovation Project of Xinjiang Uygur Autonomous Region(2020E01010).
文摘Danghara,a major food production area in southern Tajikistan,is currently suffering from the impact of rapid climate change and intensive human activities.Assessing the future impact of climate change on crop water requirements(CWRs)for the current growing period and defining the optimal sowing date to reduce future crop water demand are essential for local/regional water and food planning.Therefore,this study attempted to analyze possible future climate change effects on the water requirements of major crops using the statistical downscaling method in the Danghara District to simulate the future temperature and precipitation for two future periods(2021-2050 and 2051-2080),under three representative concentration pathways(RCP2.6,RCP4.5,and RCP8.5)according to the CanESM2 global climate model.The water footprint(WFP)of major crops was calculated as a measure of their CWRs.The increased projection of precipitation and temperature probably caused an increase in the main crop’s WFP for the current growing period,which was mainly due to the green water(GW)component in the long term and a decrease in the blue water(BW)component during the second future period,except for cotton,where all components were predicted to remain stable.Under three scenarios for the two future potato and winter wheat decreased from 5.7%to 4.8%and 3.4%to 2.2%,respectively.Although the WFP of cotton demonstrated a stable increase,according to the optimal sowing date,adecrease in irrigation demand or Bw was expected.The results of our study might be useful fordeveloping a new strategy related to irrigation systems and could help to find a balance betweenwater and food for environmental water demands and human use.
基金supported by the research project Developing Localized Indicators of Climate Change for Impact Risk Assessment in Ahmednagar using CMIP5 Data through University Grant Commission-Basic Science Research(UGC-BSR)Start-Up Grant(No.F.30-525/2020(BSR))University Grant Commission,New Delhi for providing fund。
文摘Agriculture faces risks due to increasing stress from climate change,particularly in semi-arid regions.Lack of understanding of crop water requirement(CWR)and irrigation water requirement(IWR)in a changing climate may result in crop failure and socioeconomic problems that can become detrimental to agriculture-based economies in emerging nations worldwide.Previous research in CWR and IWR has largely focused on large river basins and scenarios from the Coupled Model Intercomparison Project Phase 3(CMIP3)and Coupled Model Intercomparison Project Phase 5(CMIP5)to account for the impacts of climate change on crops.Smaller basins,however,are more susceptible to regional climate change,with more significant impacts on crops.This study estimates CWRs and IWRs for five crops(sugarcane,wheat,cotton,sorghum,and soybean)in the Pravara River Basin(area of 6537 km^(2))of India using outputs from the most recent Coupled Model Intercomparison Project Phase 6(CMIP6)General Circulation Models(GCMs)under Shared Socio-economic Pathway(SSP)245 and SSP585 scenarios.An increase in mean annual rainfall is projected under both scenarios in the 2050s and 2080s using ten selected CMIP6 GCMs.CWRs for all crops may decline in almost all of the CMIP6 GCMs in the 2050s and 2080s(with the exceptions of ACCESS-CM-2 and ACCESS-ESM-1.5)under SSP245 and SSP585 scenarios.The availability of increasing soil moisture in the root zone due to increasing rainfall and a decrease in the projected maximum temperature may be responsible for this decline in CWR.Similarly,except for soybean and cotton,the projected IWRs for all other three crops under SSP245 and SSP585 scenarios show a decrease or a small increase in the 2050s and 2080s in most CMIP6 GCMs.These findings are important for agricultural researchers and water resource managers to implement long-term crop planning techniques and to reduce the negative impacts of climate change and associated rainfall variability to avert crop failure and agricultural losses.
文摘Water is the major limiting factor for crop production. A lot of water resources have been exploited for irrigation purpose. Therefore, the objective of this review paper was to collect information on cabbage water requirement, irrigation scheduling and water use efficiency by triangulating different literatures on the topic. Nowadays on worldwide there is a water-shortage, accordingly it is necessary to adopt water saving agriculture as a counter measure as well as efficient use of irrigation water is becoming increasingly important. In growing crop, irrigation scheduling is a critical management input to ensure optimum soil moisture status for proper plant growth and development as well as for optimum yield, water use efficiency and economic benefits. Thus according reviewed literatures on average twice a week irrigation scheduling and 2.57 - 5.81 mm/day of crop water requirement is more visible for cabbage production. In addition, climate models were reviewed in detail in this paper CROPWAT 8.0 and DSSAT reproduce acceptably the unimodal and bimodal shapes of the annual variation of rainfall and temperature respectively;there is a time shift between the observed and simulated peaks. Therefore it is essential to develop irrigation scheduling strategies under local climatic conditions to utilize scarce water resources efficiently and effectively for crop production.
基金Project supported by the National High Technology Research and Development Program of China (863 Program) (No. 2003AA209030) High Technology Research and Development Program of Jiangsu Province (No. BG2004320) the National Natural Science Foundation
文摘A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.
基金jointly supported by the National Natural Science Foundation of China (32171679 and 32201475)。
文摘Accurate estimation of crop evapotranspiration(ETc) and soil water balance, which is vital for optimizing water management strategy in crop production, can be performed by simulation. But existing software has many deficiencies, including complex operation, limited scalability, lack of batch processing, and a single ETc model. Here we present simET, an open-source software package written in the R programming language. Many concepts involved in crop ETc simulation are condensed into functions in the package. It includes three widely used crop ETc models built on these functions: the single-crop coefficient,double-crop coefficient, and Shuttleworth–Wallace models, along with tools for preparing model data and comparing estimates. SimET supports ETc simulation in crops with repeated growth cycles such as alfalfa, a perennial forage crop that is cut multiple times annually.
文摘Climate warming is recognized as an objective reality all over the world. The typical characteristics of this warming include rise in soil and air temperature, more frequent and intensified extreme weather events (droughts, floods, storms) that especially became apparent in the recent decade, and, finally, change in precipitation patterns. In the arid areas, to which the Aral Sea basin, the research object, belongs too, more frequent dry years accompanied by decreased river water availability and precipitation and increased aridity of air are the most critical. This has a negative effect on agriculture in the basin’s countries, which is a source of livelihoods for almost half of the population. Most researchers studying the climate change effects note that the temperature rise leads to increased evaporation and, hence, to growth of water demands for irrigation of crops. The analysis made for the Fergana Valley on the basis of potential evapotranspiration proves an increase in moisture deficit during growing season through the rise in air temperature. According to REMO modeling of climatic scenarios until 2100, evapotranspiration would increase significantly by 4 - 8 mm/day in summer months. However, it is demonstrated also that the thermal potential of given area would be changing. The growth of the thermal potential causes that the sum of effective temperatures is reached in shorter period of time and the crops can be sown earlier. This, first, would reduce the crop development phases and the growing season as a whole, and, consequently, would decrease the total water use. For example, for the mid-season cotton, the growing season would become 30 days shorter and the water use would decrease by 100 mm by 2100. The thermal patterns should be considered as the basis for crop rotation and, hence, for water planning.
文摘Crop models often require extensive input data sets to realistically simulate crop growth. Development of such input data sets can be difficult for some model users. The objective of this study was to evaluate the importance of variables in input data sets for crop modeling. Based on published hybrid performance trials in eight Texas counties, we developed standard data sets of 10-year simulations of maize and sorghum for these eight counties with the ALMANAC (Agricultural Land Management Alternatives with Numerical Assessment Criteria) model. The simulation results were close to the measured county yields with relative error only 2.6% for maize, and - 0.6% for sorghum. We then analyzed the sensitivity of grain yield to solar radiation, rainfall, soil depth, soil plant available water, and runoff curve number, comparing simulated yields to those with the original, standard data sets. Runoff curve number changes had the greatest impact on simulated maize and sorghum yields for all the counties. The next most critical input was rainfall, and then solar radiation for both maize and sorghum, especially for the dryland condition. For irrigated sorghum, solar radiation was the second most critical input instead of rainfall. The degree of sensitivity of yield to all variables for maize was larger than for sorghum except for solar radiation. Many models use a USDA curve number approach to represent soil water redistribution, so it will be important to have accurate curve numbers, rainfall, and soil depth to realistically simulate yields.
文摘Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Landscape Modeling System (PALMS) model to simulate soil water content throughout the growing season for several years and for three major soil series of the semiarid Texas Southern High Plains (SHP). Accuracy of the model was evaluated by comparing measured and calculated values of soil water content and using root mean squared difference (RMSD), squared bias (SB), squared difference between standard deviations (SDSD), and lack of correlation weighted by the standard deviation (LCS). Different versions of the model were obtained by modifying soil hydraulic properties, including saturated hydraulic conductivity (Ks) and residual (θr) and saturated (θs) soil volumetric water content, which were calculated using Rosetta pedotransfer functions. These modifications were combined with updated routines of the soil water solver in PALMS to account for rapid infiltration into dry soils that often occur in the SHP. Field studies were conducted across a wide range of soil and water conditions in the SHP. Soil water content was measured by neutron attenuation and gravimetrically throughout the growing seasons at each location to compare absolute values and the spatial distribution of soil water with PALMS calculated values. Use of Rosetta calculated soil hydraulic properties improved PALMS soil water calculation from 1% - 13% of measured soil volumetric water content (θv) depending on soil type. Large-scale models such as PALMS have the potential to more realistically represent management effects on soil water availability in agricultural fields. Improvements in PALMS soil water calculations indicated that the model may be useful to assess long-term implications of management practices designed to conserve irrigation water and maximize the profitability of dryland and irrigated cropping systems in the SHP.
文摘Development and judicious management of available water resources play a key role for economic upliftment of any region. The agricultural pattern and social and demographic status in the upper basin of the Dulung Nala Stream (a tributary of the Subarnarekha River) in the western part of the State of West Bengal, India, reveals growing demand of water in the basin. The paper reports different management plans involving different types of water harvesting structures (and associated different types of water distribution systems) and different crop combinations and with benefit/cost ratios varying from 1.3 to 11.2 for the basin. The study points out that the judicious choice of both the water harvesting structure as well as the water distribution system is important. Proper planning of crop pattern is also to be emphasized for reaping maximum benefit. It further emphasizes that cost- benefit ratio cannot solely govern the choice of structure and that maximum utilization of catchmental water and thus enhancement of agricultural output (and also economic return from the catchment) i.e. quantum of benefit is also important. The water harvesting structures proposed in this study can be implemented in other semi-arid regions of India having almost the same climatic and socio-economic conditions.
文摘Crop coefficients (Kc) of sugar beet were determined for accurate calculation of water requirements (CWR) and better irrigation water management. Three irrigation treatments were used during two seasons to measure actual crop water use (ETc) under no soil stress treatment using gravimetric sampling. In the second season (SS), the method was modified to target 8 temporal points during crop growth for smooth calculation of ETc under sufficient moisture supply to avoid the distortion that was created by the continuous gravimetric sampling after, before and during each irrigation cycle on the experimental plots. Water was stopped when each targeted sampling point was reached using large plots where intensive sampling continues until the crop reaches severe water stress or permanent wilting point (PWP). The actual crop water use was extracted from the soil moisture depletion curve which allowed the identification of two clear segments. The first segment indicated crop water use during no water stress while the change of the slope indicated the beginning of the water stress. The reference crop evapotranspiration (ET0) was determined on daily basis using appropriate weather data that coincides with the ETc measurement and consequently the crop Kc were calculated. The results showed that the method used during the SS is easy and provides a better understanding of actual crop water use and better estimation of crop Kc. The calculated 10-day Kc values for sugar beet under heavy cracking clay soil conditions were: 0.46, 0.49, 0.53 and 0.60; for the initial stage: 0.69, 0.78, 0.88 and 0.97; for the development stage: 1.05, 1.11, 1.13, 1.11 and 1.04; for mid-season stage and for late season stage: 0.92, 0.74 and 0.60. Yield and other sugar related parameters were also presented for the two seasons.
基金Supported by Chongqing Municipal Frontiers and Application Base Research Program,China(cstc2014jcyjA 20002)Chongqing Municipal Key Laboratory of Institutions of Higher Education,China(WEPKL2013MS-10)Innovation Planning Project for University Students of Chongqing Three Gorges University,China(2014-56)
文摘Under global climate change background,using daily meteorological data at Liangping ground meteorological station during 1961- 2012,we calculated crop water requirement and net irrigation water requirement during rice growth period in Liangping County,and analyzed its climate tendency rate. Results showed that climate tendency rate of crop water requirement during growth period of rice was only- 0. 007 mm /10 a; climate tendency rate of rainfall was- 0. 06 mm /10 a,but interannual change was relatively larger; climate tendency rate of net irrigation water requirement was 0. 011 mm /10 a. In the years when drought occurred,such as 2006 and 2011,both rice water requirement and net irrigation water requirement in Liangping were greatly higher than means over the years. Therefore,we should focus on drought pre-warning and risk management improving drought disaster prevention in Liangping in the future.
文摘The University of California, Davis and the California Department of Water Resources have developed a weather generator application program “SIMETAW” to simulate weather data from climatic records and to estimate reference evapotranspiration (ETo) and crop evapotranspiration (ETc) with the generated simulation data or with observed data. A database of default soil depth and water holding characteristics, effective crop rooting depths, and crop coefficient (Kc) values to convert ETo to ETc are input into the program. After calculating daily ETc, the input and derived data are used to determine effective rainfall and to generate hypothetical irrigation schedules to estimate the seasonal and annual evapotranspiration of applied water (ETaw), where ETaw is the net amount of irrigation water needed to produce a crop. in this paper, we will discuss the simulation model and how it determines ETaw for use in water resources planning.
基金supported and funded by the California Department of Water Resources(DWR)
文摘The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily soil water balance and determine crop evapotranspiration (ETo), evapotranspiration of applied water (ETaw), and applied water (AW) for use in California water resources planning. ETaw is a seasonal estimate of the water needed to irrigate a crop assuming 100% irrigation efficiency. The model accounts for soils, crop coefficients, rooting depths, seepage, etc. that influence crop water balance. It provides spatial soil and climate information and it uses historical crop and land-use category information to provide seasonal water balance estimates by combinations of detailed analysis unit and county (DAU/County) over Califomia. The result is a large data base of ETc and ETaw that will be used to update information in the new California Water Plan (CWP). The application uses the daily climate data, i.e., maximum (Tx) and minimum (Tn) temperature and precipitation (Pcp), which were derived from monthly USDA-NRCS PRISM data (PRISM Group 2011) and daily US National Climate Data Center (NCDC) climate station data to cover California on a 4 kmx4 km change grid spacing. The application uses daily weather data to determine reference evapotranspiration (ETo), using the Hargreaves-Samani (HS) equation (Hargreaves and Samani 1982, 1985). Because the HS equation is based on temperature only, ETo from the HS equation were compared with CIMIS ETo at the same locations using available CIMIS data to determine correction factors to estimate CIMIS ETo from the HS ETo to account for spatial climate differences. CaI-SIMETAW also employs near real-time reference evapotranspiration (ETo) information from Spatial CIMIS, which is a model that combines weather station data and remote sensing to provide a grid of ETo information. A second database containing the available soil water holding capacity and soil depth information for all of California was also developed from the USDA-NRCS SSURGO database. The Cal-SIMETAW program also has the ability to generate daily weather data from monthly mean values for use in studying climate change scenarios and their possible impacts on water demand in the state. The key objective of this project is to improve the accuracy of water use estimates for the California Water Plan (CWP), which provides a comprehensive report on water supply, demand, and management in California. In this paper, we will discuss the model and how it determines ETaw for use in water resources planning.
基金supported by the National Major Science and Technology Projects for Water Pollution Control and Management(2012ZX07104-003).
文摘Understanding crop water requirements(CWR)in semi-arid region is essential for better irrigation practices,scheduling and efficient use of water since the water supply through rainfall is limited.This paper estimated the crop reference and actual evapotranspiration(Eto and ETc)respectively and the irrigation water requirement of rice(Oryza sativa L.)in Benin’s sub-basin of Niger River(BSBNR)of west Africa,using CROPWAT model.The long recorded climatic data,crop and soil data from 1942 to 2012 were computed with the Cropwat model which is based on the United Nations’Food and Agriculture Organization(FAO)paper number 56(FAO56).The Penman-Monteith method was used to estimate ETo.Crop coefficients(Kc)from the phenomenological stages of rice were applied to adjust and estimate the actual evapotranspiration ETc through a water balance of the irrigation water requirements(IR).The results showed the BSBNR annual reference evapotranspiration(ETo)was estimated at 1967 mm.The lowest monthly value of ETo of 123 mm,was observed in August month,middle of the rainy season while the highest value 210 mm was observed in March within dry season.The crop evapotranspiration ETc and the crop irrigation requirements were estimated at 651 mm and 383 mm,respectively in rainy season and 920 mm and 1148 mm,respectively within a dry season.Irrigation projects of these seasons can then be scheduled for water use efficiency based on these findings.