The reform of the system of water resource management abroad has started since the 50s of last century, it has left us a lot of experiences in many aspects with the innovation of system, such as the legal environment ...The reform of the system of water resource management abroad has started since the 50s of last century, it has left us a lot of experiences in many aspects with the innovation of system, such as the legal environment in water resources, water rights, water market theory, and the "participation" management of water resources, these experiences has been promoted in more than 40 developing countries. Based on analyzing the theory and experiences of water resources management both at home and abroad, especially the theory and experiences of agricultural water resources management, this paper puts forward the main problems waiting for further investigation in China's water resources management and provides some reference and inspiration for the innovation of the system of water resource management in China.展开更多
The plain of Mascara includes groundwater resources, heavily exploited for the needs of the population, industry and agriculture. However, this resource is under threat from the point of view of quality and quantity. ...The plain of Mascara includes groundwater resources, heavily exploited for the needs of the population, industry and agriculture. However, this resource is under threat from the point of view of quality and quantity. The degradation of water quality comes from water discharges untreated (domestic and/or industrial) and from the irrational use of fertilizers and pesticides in agriculture. The decrease in reserves is due to the effects of intensive exploitation. Several studies on the water resources of the plain generated a mass of very important data. In most cases, these data are disparate at different institutions managers (water resources, environment, etc.), and are found recorded in paper documents, difficult to exploit. For this reason, it would be essential to use reliable new techniques, namely the GIS (geographic information systems). The implementation of the GIS of the plain of Mascara (with extension to all the sub-basin of Wadi Fekan) must permit to organize the data and transform it into information. Integration, crossing and superposition of the data with other variables may contribute to spatial analysis and generate very important thematic maps. The GIS constitutes a very effective decision aid tool for the management, exploitation, preservation and protection of water resources. The exploitation possibilities of GIS are multiple, direct or indirect. We give an example as the coupling with a groundwater flow model that may be the subject of additional work.展开更多
Payments for ecosystem services (PES) have been created worldwide to assist watershed management and improve or maintain water quality. Considering their importance, we conducted a holistic review of payment for water...Payments for ecosystem services (PES) have been created worldwide to assist watershed management and improve or maintain water quality. Considering their importance, we conducted a holistic review of payment for water-related ecosystem services to understand how this instrument has been applied in watershed management worldwide. First, we identified the watershed management actions considered by the PES programs and the challenges of implementing water-related PES. After we identified the methods and criteria used to define priority areas for water-related PES. Our review considered articles published on the Web of Science from 2011 to 2022. We found 236 articles relating PES to water resources, highlighting the main water conservation strategies: native vegetation conservation, native vegetation restoration, and implementing best agricultural practices. The method most frequent was interview, followed by the use of technologies, document analysis, and hydrological models. Another significant result was that priority areas for receiving PES are mainly riparian zones, areas near or with native vegetation cover, areas with higher erosion potential, steep areas, and areas with socially vulnerable communities. This review was crucial to identify efficient water resource conservation strategies and potential challenges in the implementation and development of PES programs.展开更多
Hydrological forecasting plays an important role in water resource management, supporting socio-economic development and managing water-related risks in river basins. There are many flow forecasting techniques that ha...Hydrological forecasting plays an important role in water resource management, supporting socio-economic development and managing water-related risks in river basins. There are many flow forecasting techniques that have been developed several centuries ago, ranging from physical models, physics-based models, conceptual models, and data-driven models. Recently, Artificial Intelligence (AI) has become an advanced technique applied as an effective data-driven model in hydrological forecasting. The main advantage of these models is that they give results with compatible accuracy, and require short computation time, thus increasing forecasting time and reducing human and financial effort. This study evaluates the applicability of machine learning and deep learning in Hanoi water level forecasting where it is controlled for flood management and water supply in the Red River Delta, Vietnam. Accordingly, SANN (machine learning algorithm) and LSTM (deep learning algorithm) were tested and compared with a Physics-Based Model (PBM) for the Red River Delta. The results show that SANN and LSTM give high accuracy. The R-squared coefficient is greater than 0.8, the mean squared error (MSE) is less than 20 cm, the correlation coefficient of the forecast hydrology is greater than 0.9 and the level of assurance of the forecast plan ranges from 80% to 90% in both cases. In addition, the calculation time is much reduced compared to the requirement of PBM, which is its limitation in hydrological forecasting for large river basins such as the Red River in Vietnam. Therefore, SANN and LSTM are expected to help increase lead time, thereby supporting water resource management for sustainable development and management of water-related risks in the Red River Delta.展开更多
As the world’s top two economies,the United States(U.S.)and China face a number of similar water resources problems.Yet,few studies have been done to systematically compare policies and approaches on water resources ...As the world’s top two economies,the United States(U.S.)and China face a number of similar water resources problems.Yet,few studies have been done to systematically compare policies and approaches on water resources management between China and the U.S.This study compares water resources policies of China and the U.S.in the areas of national authority,water supply,water quality,and ecosystem use of the water to draw lessons learned and shed light on water resources management in China,the U.S.,and the rest of the world.The lessons learned from the comparison include six aspects.1)New paradigms of people-water harmony and a water-saving society are urgently needed to address the pressing water crisis and achieve the United Nations Sustainable Development Goals(UN SDGs).2)A comprehensive,consistent,forward-looking national policy is necessary to achieve sustainable use of water resources.3)Empowerment of river basin commissions with comprehensive authority over the integrative management of air,land,water,and biological resources in the river basin could significantly enhance the benefits and effectiveness of economic development and environmental protection.4)Expansion of water exchange through market mechanisms among water users promotes efficient and beneficial water uses.5)Use of water for ecosystem services should be an integral part of water resources management.China has set up a national blueprint for achieving ecological civilization;maintaining appropriate amounts of flow in rivers and lakes for maintenance of wildlife and fisheries and ecosystems should be institutionalized as part of this national strategy as well.6)By sharing their rich experiences and lessons in water resources management,economic development,and ecological protection with other countries,China and the U.S.can help the world to achieve global human-water harmony and the UN SDGs.展开更多
Hydrological drought is usually characterised by water loss over time from both underground and surface supplies. Thus for this study, the assessment of hydrological drought was carried out by employing Cumulative Rai...Hydrological drought is usually characterised by water loss over time from both underground and surface supplies. Thus for this study, the assessment of hydrological drought was carried out by employing Cumulative Rainfall/Streamflow </span><span style="font-family:""><span style="font-family:Tahoma;">Anomaly as preliminary tools for the presence of drought signatures while detailed characterisation was via Streamflow Drought Index (SDI). The results revealed that hydrological drought was observed in all the stations;however, though in general, the stations could be classified as experiencing near normal drought conditions with mild drought signatures. The findings also revealed that the average streamflow deficit volume and durations of the hydrological drought severity were 1.780 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 192 months, 1.444 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, 3.148 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, and 0.159 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 372 months for Bakolori, Goronyo (pre dam construction era), Goronyo (post dam construction era) and Zobe stations, respectively. The results also revealed the relevance of flow duration curve and analysis of frequency of drought state transition for the development of scenario-based basin water resources management protocol. The coefficient of determination (R</span><sup><span style="font-family:Tahoma;">2</span></sup><span style="font-family:Tahoma;">) statistic of the developed regression models indicate that 73.3% and 86.5% variation in streamflow dynamics across the Basin can be explained by climate change variables. However, for sustainable management of water resources in the Basin, it is imperative that characterisation of hydrological drought and monitoring should employ robust indices which use improved monthly precipitation estimates under global warming scenario in addition to ensuring that there is a shift from reactive to proactive approach in order to combat hydrological risk. Hence, a robust framework that finds application both for planning mitigation actions which embody strategic, tactical and emergency components should be designed;to this end, analysis of persistence and recurrence of drought in time and determination of possible recurrent patterns are necessary.展开更多
Water is the material basis of man's living. It cannot be substituted. In addition, it is the life line of agriculture even the national economy. However, water resources face very serious situation in our country. I...Water is the material basis of man's living. It cannot be substituted. In addition, it is the life line of agriculture even the national economy. However, water resources face very serious situation in our country. It is shown that wafer resources are in short and the water pollution is benumbing more and more serious day by day. The reason for the problem of water resources is the management problem of water resources. Besides. the per capita water resource is low because the population is increasingly serious. The industrialization of water resources is a new conception presented due to the deepening of the social labor division and the demands of the mitigating contradiction of water resources. This paper analyzes the present situation of water resources in our country and the reasons for the problems, It expounds the important significance of the industrialization of management of water resources. Then it puts forward some saggesnons for the management of the industry of water resources, and some measure to solve those problems.展开更多
It is a challenge for China to address its serious water resource problems, and inefficient water use. Improving water use efficiency is the key solution to dealing with this issue. There are two basic mechanisms prac...It is a challenge for China to address its serious water resource problems, and inefficient water use. Improving water use efficiency is the key solution to dealing with this issue. There are two basic mechanisms practiced in the world aiming to pursue water conservation, i.e. administrative and market-based management pattern. Water as an irreplaceable resource with many attributes, either public or market-based management mechanism has its disadvantages. In order to avoid the inherent "administrative failure" or "market failure", this paper emphasizes the importance of changing traditional water resource management mechanism to establish a mixed mechanism of public and market water management based on China’s conditions and experiences from developed countries. Three key aspects of this combined mechanism are identified in this paper, i.e. recognizing and managing water rights to promote efficiency, strengthening effectiveness of government management to lower transaction cost and encouraging water user participation to increase flexibility. Detailed information on implementing of this combined mechanism in China is given in the end.展开更多
In the coastal catchments of Shandong Province the water scarcity is aggravated due to saltwater intrusion, reducing the usability of water resources available. Such a situation calls for sustainable integrated water ...In the coastal catchments of Shandong Province the water scarcity is aggravated due to saltwater intrusion, reducing the usability of water resources available. Such a situation calls for sustainable integrated water resources management (IWRM). The idea for the objectives and implementation of the IWRM are explained in this paper. The general objective of the planned project disscussed in the present study is to bring together German traditional expertise in water resources management and newer developments in the context of the European Water Framework Directive; the research efforts aim to relieve the desperate water scarcity situation in the costal area of Shandong Province.展开更多
Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studie...Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studied. Fixed observation results from 1993to 2002 showed that pools covering about 15% of total area could store up 10% of surfacerunoff, keep 78.1% of eroded soil and 65.4% of lost nutrients. The yearly ratio ofinterception and evapotranspiration in land, storage in pools and drainage was 7:2:1,which ensured the resources and nutrients equilibrium and a benign recycle in thecatchment area system, and benefited the aquatic culture and helped to resist seasonaldrought. Moreover, the results showed that soil erosion modulus decreased significantly,equal to or lower than soil loss tolerance (≤500 tkm-2) in reddish yellow soil regions.Soil organic matter, total and available N content in sloping land, dryland and paddyfield increased steadily (>10%); water storage enhanced by more than 20% in sloping landand dryland in drought season; crop production increased by more than 20%; and productionof trees, fruits, tea and fish as well as land productivity increased yearly.展开更多
This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the...This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d’éLéments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the flooding of the Meirama open pit and the local water balances for different hydrological components.展开更多
The rapid industrial development and population growth increase the utilization of fresh water resulting in an increase of the amount of wastewater. Several Countries face a double challenge with regard to water resou...The rapid industrial development and population growth increase the utilization of fresh water resulting in an increase of the amount of wastewater. Several Countries face a double challenge with regard to water resources, namely meeting the growing need for water for the population and treating the wastewater generated for application. The toxicity found in these water streams threatens the environment and human health. Hence the urgent need is to treat wastewater. The DRC is not immune from this threat. Its average population growth rate has exceeded the 3% and the number of industries it hosts continues to increase. The wastewater generated by this increasing pressure from urbanization and industrialization must be treated as required in the Congolese legal arsenal. Various factors need to be considered prior choosing the water treatment method. The choice must take into account the imperatives of the moment which are: modernization (local context) and sustainable development (international context). There are several wastewater treatments that are widely used for the removal of toxic elements such as ion exchange, reverse osmosis, chemical precipitation and electro-coagulation just to name a few. The most recent studies have shown that the galvanic technique can be used in the purification of water from domestic and industrial origin to meet drinking water standards. Various researchers have used this technique at laboratory and pilot scale demonstrating its cost-effectiveness as it uses no chemical reagents, consumes less energy and occupies only a small space for processing large flows. However, there are very few studies demonstrating the success of this treatment on an industrial scale. Therefore, this work seeks to understand and master the mechanisms that take place in the galvanic treatment. In addition, this study focuses on the development of a robust prototype that is adaptable to the needs of various users while at the same time being relatively cheap to meet the national needs.展开更多
Climate change and associated rising in sea water level have affected the salinity in many rivers around the world. It has an effect on the embouchure adjacent with the sea, which is called the salinity intrusion prob...Climate change and associated rising in sea water level have affected the salinity in many rivers around the world. It has an effect on the embouchure adjacent with the sea, which is called the salinity intrusion problem. This study investigated the effects of climate change on sea water level that affects the hydraulic conditions, salinity, water supply and agricultural areas in the lower Chao Phraya River by MIKE 11 model has been used. The study covered the area from Chao Phraya Dam (barrage), Chai Nat Province to the river estuary, Samut Prakan Province. The model was divided into two parts, hydrodynamic module and advection-dispersion model. Calibration of each part was done by adjusting its important coefficients. It was observed that the Manning’s coefficient (n) and coefficient dispersion of mass were in the range of 0.025 - 0.40 and 800 - 1600 m2/s, respectively. The results of comparison between models and observation data revealed order of forecasting error (R2) with the range of 0.76-0.99 for water level and 0.73 - 0.86 for salinity. The RCP 8.5 scenario from IPCC report was simulated. It was found that sea water level rising in was 1.16 m in the year of 2100, and salinity at SamlaePump Station was risen to 0.37 - 0.75 g/l. The value of 0.25 g/l exceeding standard and the pointed tip of salinity was at Koh Rain District, Ayutthaya Province (137 km from Chao Phraya Dam: CPD). For agricultural sectors, the value of 0.20 g/l exceeding standard and the pointed tip of salinity was at Ban Mai District, Ayutthaya Province (123 km from CPD). Results obtained from this study will give the guideline in raw water resources management for water supply and agricultural in Chao Phraya River Basin.展开更多
The Sandougou River is the last major right bank tributary of the Gambia River.It has a catchment area of 11,668 km² and is located in Senegalese territory.The flow in this sloping basin(1‰)is favoured by the co...The Sandougou River is the last major right bank tributary of the Gambia River.It has a catchment area of 11,668 km² and is located in Senegalese territory.The flow in this sloping basin(1‰)is favoured by the conservation of soils and vegetation.Since 1970,global rainfall trends(below the average of 800 mm)have shown a drought affecting the whole basin with an average deficit of 100 mm per year.In addition,erosion phenomenon combined with high rainfall intensities explains the rapid run-off.This constitutes a considerable loss of water resources,up to 20%in the Sandougou basin.In this rural area where primary activities predominate,anthropogenic pressure is considerable.Indeed,overexploitation of firewood,resulting from the strong dependence of local populations on this resource,is at the origin of deforestation in the Sandougou basin.Such a situation contributes to environmental degradation and also has repercussions on soil erosion.Erosion affects the water retention capacity of the soil making it more susceptible to extreme conditions such as drought.The impact of soil erosion on more remote sites is not always as apparent as the impact of erosion on the site itself.Sediment reaching watercourses can accelerate slope erosion,silt up drainage ditches and streams,silt up reservoirs,cover spawning areas and reduce water quality.Fertilizers frequently transported with soil particles can contaminate or pollute water sources.To cope with this dynamic,soil defence and restoration(SDR)techniques have long been considered as the solution to the problems.However,the multifaceted nature of environmental problems and their persistence leads to the consideration of a more holistic approach.In the Sandougou catchment area,the application of article R50 of the Senegalese Forestry Code,the implementation of planning tools(AP-IWRM),institutional development in the framework of integrated water resources management(IWRM)prove the interest of such an approach for the protection of water resources.展开更多
Alternatives to the sectoral and public policies and regulations of environmental and water resources' protection, and the experiments of integrated management have been rapidly multiplied since the year 1990. Water ...Alternatives to the sectoral and public policies and regulations of environmental and water resources' protection, and the experiments of integrated management have been rapidly multiplied since the year 1990. Water constitutes a principal stake of these environmental policies in the majority of the countries and especially in the countries of North Africa as Algeria, where this resource is threatened by repeated dryness and by the impact of the climate change. The integrated water resource management reflects today the world tendency of the governments to exploit and preserve this resource by a way based on a process of governance, which passes by the dialog of diversified actors (various sectors). According to this policy and to the promulgation of the Algerian National Report on State effective implementation and coordination mechanisms are required. How this principle of integrated water management will be executed with various scenarios in Algeria and what are the main difficulties that can be met? Or, more exactly, what are the variables that can influence the operation of the local water process governorship? This analysis will be carried out through the example of the Wadi El K6bir watershed located in the northeast of Algeria, which is real natural area of water supply that feeds the communities, the natural and artificial basins, and preserves the perenniality of the existing natural ecosystems especially the one of the natural park classified by the United Nations Educational Scientific and Cultural Organization (U.N.E.S.C.O) in 1989 as the inheritance of humanity and six other sites classified according to the Ramsar convention as wetlands of international importance to be preserved.展开更多
With the case study of two rural communities of Hetian County and Shawan County in Xinjiang, the foundation, operation and development of the water management organizations in the two communities and their reform achi...With the case study of two rural communities of Hetian County and Shawan County in Xinjiang, the foundation, operation and development of the water management organizations in the two communities and their reform achievements were studied and compared. It was concluded that the reform of water resources management should be in accordance with the practical conditions of rural communities. Only with the same objectives of community people and by benefiting the farmers could the reform of water resources management be effectively implemented and achieve good results.展开更多
The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to m...The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.展开更多
This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a dis...This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.展开更多
Science and policy have been interlinked for decades and perform essential nexus conditions in the governing aspects of environmental scenarios.This review paper examines the present challenges in the science–policy ...Science and policy have been interlinked for decades and perform essential nexus conditions in the governing aspects of environmental scenarios.This review paper examines the present challenges in the science–policy interface in terms of water governance in the Caspian Sea and identifies effective conditions that may be used in the current context to enhance the mechanism.The evaluation of the science–policy link in the water policy of the Caspian Sea reveals a gap between knowledge producer and governance system,impeding the translation of scientific information into action.Complicated and context-dependent solutions make it challenging to establish effective science–policy processes in the Caspian Sea water governance settings.Establishing a common governing authority,implementing water and resource management regulations,and protecting the natural environment through legal frameworks are crucial steps to address these concerns and ensure sustainable development.Collaboration among coastal states is essential in environmental,economic,and social aspects of regional development.However,the lack of a comprehensive approach,coherent activities,and effective utilization of national and regional power has hindered efforts to halt the environmental degradation of the Caspian Sea.Local governments need to recognize their responsibility to protect and utilize the Caspian Sea for present and future generations,considering both environmental and human security.The interlinkage of the Caspian Sea water governance with the Organization for Economic Co-operation and Development(OECD)water governance principles offers a framework for policymakers to assess gaps and make necessary amendments to existing mechanisms.Effective science–policy interaction,engagement of diverse stakeholders,institutionalizing agreements,and addressing collective action issues are critical for successful water governance.展开更多
文摘The reform of the system of water resource management abroad has started since the 50s of last century, it has left us a lot of experiences in many aspects with the innovation of system, such as the legal environment in water resources, water rights, water market theory, and the "participation" management of water resources, these experiences has been promoted in more than 40 developing countries. Based on analyzing the theory and experiences of water resources management both at home and abroad, especially the theory and experiences of agricultural water resources management, this paper puts forward the main problems waiting for further investigation in China's water resources management and provides some reference and inspiration for the innovation of the system of water resource management in China.
文摘The plain of Mascara includes groundwater resources, heavily exploited for the needs of the population, industry and agriculture. However, this resource is under threat from the point of view of quality and quantity. The degradation of water quality comes from water discharges untreated (domestic and/or industrial) and from the irrational use of fertilizers and pesticides in agriculture. The decrease in reserves is due to the effects of intensive exploitation. Several studies on the water resources of the plain generated a mass of very important data. In most cases, these data are disparate at different institutions managers (water resources, environment, etc.), and are found recorded in paper documents, difficult to exploit. For this reason, it would be essential to use reliable new techniques, namely the GIS (geographic information systems). The implementation of the GIS of the plain of Mascara (with extension to all the sub-basin of Wadi Fekan) must permit to organize the data and transform it into information. Integration, crossing and superposition of the data with other variables may contribute to spatial analysis and generate very important thematic maps. The GIS constitutes a very effective decision aid tool for the management, exploitation, preservation and protection of water resources. The exploitation possibilities of GIS are multiple, direct or indirect. We give an example as the coupling with a groundwater flow model that may be the subject of additional work.
文摘Payments for ecosystem services (PES) have been created worldwide to assist watershed management and improve or maintain water quality. Considering their importance, we conducted a holistic review of payment for water-related ecosystem services to understand how this instrument has been applied in watershed management worldwide. First, we identified the watershed management actions considered by the PES programs and the challenges of implementing water-related PES. After we identified the methods and criteria used to define priority areas for water-related PES. Our review considered articles published on the Web of Science from 2011 to 2022. We found 236 articles relating PES to water resources, highlighting the main water conservation strategies: native vegetation conservation, native vegetation restoration, and implementing best agricultural practices. The method most frequent was interview, followed by the use of technologies, document analysis, and hydrological models. Another significant result was that priority areas for receiving PES are mainly riparian zones, areas near or with native vegetation cover, areas with higher erosion potential, steep areas, and areas with socially vulnerable communities. This review was crucial to identify efficient water resource conservation strategies and potential challenges in the implementation and development of PES programs.
文摘Hydrological forecasting plays an important role in water resource management, supporting socio-economic development and managing water-related risks in river basins. There are many flow forecasting techniques that have been developed several centuries ago, ranging from physical models, physics-based models, conceptual models, and data-driven models. Recently, Artificial Intelligence (AI) has become an advanced technique applied as an effective data-driven model in hydrological forecasting. The main advantage of these models is that they give results with compatible accuracy, and require short computation time, thus increasing forecasting time and reducing human and financial effort. This study evaluates the applicability of machine learning and deep learning in Hanoi water level forecasting where it is controlled for flood management and water supply in the Red River Delta, Vietnam. Accordingly, SANN (machine learning algorithm) and LSTM (deep learning algorithm) were tested and compared with a Physics-Based Model (PBM) for the Red River Delta. The results show that SANN and LSTM give high accuracy. The R-squared coefficient is greater than 0.8, the mean squared error (MSE) is less than 20 cm, the correlation coefficient of the forecast hydrology is greater than 0.9 and the level of assurance of the forecast plan ranges from 80% to 90% in both cases. In addition, the calculation time is much reduced compared to the requirement of PBM, which is its limitation in hydrological forecasting for large river basins such as the Red River in Vietnam. Therefore, SANN and LSTM are expected to help increase lead time, thereby supporting water resource management for sustainable development and management of water-related risks in the Red River Delta.
文摘As the world’s top two economies,the United States(U.S.)and China face a number of similar water resources problems.Yet,few studies have been done to systematically compare policies and approaches on water resources management between China and the U.S.This study compares water resources policies of China and the U.S.in the areas of national authority,water supply,water quality,and ecosystem use of the water to draw lessons learned and shed light on water resources management in China,the U.S.,and the rest of the world.The lessons learned from the comparison include six aspects.1)New paradigms of people-water harmony and a water-saving society are urgently needed to address the pressing water crisis and achieve the United Nations Sustainable Development Goals(UN SDGs).2)A comprehensive,consistent,forward-looking national policy is necessary to achieve sustainable use of water resources.3)Empowerment of river basin commissions with comprehensive authority over the integrative management of air,land,water,and biological resources in the river basin could significantly enhance the benefits and effectiveness of economic development and environmental protection.4)Expansion of water exchange through market mechanisms among water users promotes efficient and beneficial water uses.5)Use of water for ecosystem services should be an integral part of water resources management.China has set up a national blueprint for achieving ecological civilization;maintaining appropriate amounts of flow in rivers and lakes for maintenance of wildlife and fisheries and ecosystems should be institutionalized as part of this national strategy as well.6)By sharing their rich experiences and lessons in water resources management,economic development,and ecological protection with other countries,China and the U.S.can help the world to achieve global human-water harmony and the UN SDGs.
文摘Hydrological drought is usually characterised by water loss over time from both underground and surface supplies. Thus for this study, the assessment of hydrological drought was carried out by employing Cumulative Rainfall/Streamflow </span><span style="font-family:""><span style="font-family:Tahoma;">Anomaly as preliminary tools for the presence of drought signatures while detailed characterisation was via Streamflow Drought Index (SDI). The results revealed that hydrological drought was observed in all the stations;however, though in general, the stations could be classified as experiencing near normal drought conditions with mild drought signatures. The findings also revealed that the average streamflow deficit volume and durations of the hydrological drought severity were 1.780 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 192 months, 1.444 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, 3.148 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, and 0.159 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 372 months for Bakolori, Goronyo (pre dam construction era), Goronyo (post dam construction era) and Zobe stations, respectively. The results also revealed the relevance of flow duration curve and analysis of frequency of drought state transition for the development of scenario-based basin water resources management protocol. The coefficient of determination (R</span><sup><span style="font-family:Tahoma;">2</span></sup><span style="font-family:Tahoma;">) statistic of the developed regression models indicate that 73.3% and 86.5% variation in streamflow dynamics across the Basin can be explained by climate change variables. However, for sustainable management of water resources in the Basin, it is imperative that characterisation of hydrological drought and monitoring should employ robust indices which use improved monthly precipitation estimates under global warming scenario in addition to ensuring that there is a shift from reactive to proactive approach in order to combat hydrological risk. Hence, a robust framework that finds application both for planning mitigation actions which embody strategic, tactical and emergency components should be designed;to this end, analysis of persistence and recurrence of drought in time and determination of possible recurrent patterns are necessary.
文摘Water is the material basis of man's living. It cannot be substituted. In addition, it is the life line of agriculture even the national economy. However, water resources face very serious situation in our country. It is shown that wafer resources are in short and the water pollution is benumbing more and more serious day by day. The reason for the problem of water resources is the management problem of water resources. Besides. the per capita water resource is low because the population is increasingly serious. The industrialization of water resources is a new conception presented due to the deepening of the social labor division and the demands of the mitigating contradiction of water resources. This paper analyzes the present situation of water resources in our country and the reasons for the problems, It expounds the important significance of the industrialization of management of water resources. Then it puts forward some saggesnons for the management of the industry of water resources, and some measure to solve those problems.
文摘It is a challenge for China to address its serious water resource problems, and inefficient water use. Improving water use efficiency is the key solution to dealing with this issue. There are two basic mechanisms practiced in the world aiming to pursue water conservation, i.e. administrative and market-based management pattern. Water as an irreplaceable resource with many attributes, either public or market-based management mechanism has its disadvantages. In order to avoid the inherent "administrative failure" or "market failure", this paper emphasizes the importance of changing traditional water resource management mechanism to establish a mixed mechanism of public and market water management based on China’s conditions and experiences from developed countries. Three key aspects of this combined mechanism are identified in this paper, i.e. recognizing and managing water rights to promote efficiency, strengthening effectiveness of government management to lower transaction cost and encouraging water user participation to increase flexibility. Detailed information on implementing of this combined mechanism in China is given in the end.
文摘In the coastal catchments of Shandong Province the water scarcity is aggravated due to saltwater intrusion, reducing the usability of water resources available. Such a situation calls for sustainable integrated water resources management (IWRM). The idea for the objectives and implementation of the IWRM are explained in this paper. The general objective of the planned project disscussed in the present study is to bring together German traditional expertise in water resources management and newer developments in the context of the European Water Framework Directive; the research efforts aim to relieve the desperate water scarcity situation in the costal area of Shandong Province.
基金funded by the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX2-SW-415,KZCX3-SW-426).
文摘Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studied. Fixed observation results from 1993to 2002 showed that pools covering about 15% of total area could store up 10% of surfacerunoff, keep 78.1% of eroded soil and 65.4% of lost nutrients. The yearly ratio ofinterception and evapotranspiration in land, storage in pools and drainage was 7:2:1,which ensured the resources and nutrients equilibrium and a benign recycle in thecatchment area system, and benefited the aquatic culture and helped to resist seasonaldrought. Moreover, the results showed that soil erosion modulus decreased significantly,equal to or lower than soil loss tolerance (≤500 tkm-2) in reddish yellow soil regions.Soil organic matter, total and available N content in sloping land, dryland and paddyfield increased steadily (>10%); water storage enhanced by more than 20% in sloping landand dryland in drought season; crop production increased by more than 20%; and productionof trees, fruits, tea and fish as well as land productivity increased yearly.
文摘This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d’éLéments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the flooding of the Meirama open pit and the local water balances for different hydrological components.
文摘The rapid industrial development and population growth increase the utilization of fresh water resulting in an increase of the amount of wastewater. Several Countries face a double challenge with regard to water resources, namely meeting the growing need for water for the population and treating the wastewater generated for application. The toxicity found in these water streams threatens the environment and human health. Hence the urgent need is to treat wastewater. The DRC is not immune from this threat. Its average population growth rate has exceeded the 3% and the number of industries it hosts continues to increase. The wastewater generated by this increasing pressure from urbanization and industrialization must be treated as required in the Congolese legal arsenal. Various factors need to be considered prior choosing the water treatment method. The choice must take into account the imperatives of the moment which are: modernization (local context) and sustainable development (international context). There are several wastewater treatments that are widely used for the removal of toxic elements such as ion exchange, reverse osmosis, chemical precipitation and electro-coagulation just to name a few. The most recent studies have shown that the galvanic technique can be used in the purification of water from domestic and industrial origin to meet drinking water standards. Various researchers have used this technique at laboratory and pilot scale demonstrating its cost-effectiveness as it uses no chemical reagents, consumes less energy and occupies only a small space for processing large flows. However, there are very few studies demonstrating the success of this treatment on an industrial scale. Therefore, this work seeks to understand and master the mechanisms that take place in the galvanic treatment. In addition, this study focuses on the development of a robust prototype that is adaptable to the needs of various users while at the same time being relatively cheap to meet the national needs.
文摘Climate change and associated rising in sea water level have affected the salinity in many rivers around the world. It has an effect on the embouchure adjacent with the sea, which is called the salinity intrusion problem. This study investigated the effects of climate change on sea water level that affects the hydraulic conditions, salinity, water supply and agricultural areas in the lower Chao Phraya River by MIKE 11 model has been used. The study covered the area from Chao Phraya Dam (barrage), Chai Nat Province to the river estuary, Samut Prakan Province. The model was divided into two parts, hydrodynamic module and advection-dispersion model. Calibration of each part was done by adjusting its important coefficients. It was observed that the Manning’s coefficient (n) and coefficient dispersion of mass were in the range of 0.025 - 0.40 and 800 - 1600 m2/s, respectively. The results of comparison between models and observation data revealed order of forecasting error (R2) with the range of 0.76-0.99 for water level and 0.73 - 0.86 for salinity. The RCP 8.5 scenario from IPCC report was simulated. It was found that sea water level rising in was 1.16 m in the year of 2100, and salinity at SamlaePump Station was risen to 0.37 - 0.75 g/l. The value of 0.25 g/l exceeding standard and the pointed tip of salinity was at Koh Rain District, Ayutthaya Province (137 km from Chao Phraya Dam: CPD). For agricultural sectors, the value of 0.20 g/l exceeding standard and the pointed tip of salinity was at Ban Mai District, Ayutthaya Province (123 km from CPD). Results obtained from this study will give the guideline in raw water resources management for water supply and agricultural in Chao Phraya River Basin.
文摘The Sandougou River is the last major right bank tributary of the Gambia River.It has a catchment area of 11,668 km² and is located in Senegalese territory.The flow in this sloping basin(1‰)is favoured by the conservation of soils and vegetation.Since 1970,global rainfall trends(below the average of 800 mm)have shown a drought affecting the whole basin with an average deficit of 100 mm per year.In addition,erosion phenomenon combined with high rainfall intensities explains the rapid run-off.This constitutes a considerable loss of water resources,up to 20%in the Sandougou basin.In this rural area where primary activities predominate,anthropogenic pressure is considerable.Indeed,overexploitation of firewood,resulting from the strong dependence of local populations on this resource,is at the origin of deforestation in the Sandougou basin.Such a situation contributes to environmental degradation and also has repercussions on soil erosion.Erosion affects the water retention capacity of the soil making it more susceptible to extreme conditions such as drought.The impact of soil erosion on more remote sites is not always as apparent as the impact of erosion on the site itself.Sediment reaching watercourses can accelerate slope erosion,silt up drainage ditches and streams,silt up reservoirs,cover spawning areas and reduce water quality.Fertilizers frequently transported with soil particles can contaminate or pollute water sources.To cope with this dynamic,soil defence and restoration(SDR)techniques have long been considered as the solution to the problems.However,the multifaceted nature of environmental problems and their persistence leads to the consideration of a more holistic approach.In the Sandougou catchment area,the application of article R50 of the Senegalese Forestry Code,the implementation of planning tools(AP-IWRM),institutional development in the framework of integrated water resources management(IWRM)prove the interest of such an approach for the protection of water resources.
文摘Alternatives to the sectoral and public policies and regulations of environmental and water resources' protection, and the experiments of integrated management have been rapidly multiplied since the year 1990. Water constitutes a principal stake of these environmental policies in the majority of the countries and especially in the countries of North Africa as Algeria, where this resource is threatened by repeated dryness and by the impact of the climate change. The integrated water resource management reflects today the world tendency of the governments to exploit and preserve this resource by a way based on a process of governance, which passes by the dialog of diversified actors (various sectors). According to this policy and to the promulgation of the Algerian National Report on State effective implementation and coordination mechanisms are required. How this principle of integrated water management will be executed with various scenarios in Algeria and what are the main difficulties that can be met? Or, more exactly, what are the variables that can influence the operation of the local water process governorship? This analysis will be carried out through the example of the Wadi El K6bir watershed located in the northeast of Algeria, which is real natural area of water supply that feeds the communities, the natural and artificial basins, and preserves the perenniality of the existing natural ecosystems especially the one of the natural park classified by the United Nations Educational Scientific and Cultural Organization (U.N.E.S.C.O) in 1989 as the inheritance of humanity and six other sites classified according to the Ramsar convention as wetlands of international importance to be preserved.
基金Supported by the International Cooperation Department of the Ministry of Science&Technology of the People's Republic of China(2010DFB90240)
文摘With the case study of two rural communities of Hetian County and Shawan County in Xinjiang, the foundation, operation and development of the water management organizations in the two communities and their reform achievements were studied and compared. It was concluded that the reform of water resources management should be in accordance with the practical conditions of rural communities. Only with the same objectives of community people and by benefiting the farmers could the reform of water resources management be effectively implemented and achieve good results.
基金supported by the National Basic Research Program of China (2010CB951004)a project of Xinjiang Key Lab of Water Cycle and Utilization in Arid Zone,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences (XJYS0907-2009-02)
文摘The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.
基金supported by the National Basic Research Program of China(2010CB951002)the Dr.Western-funded Project of Chinese Academy of Science(XBBS201010 and XBBS201005)+1 种基金the National Natural Sciences Foundation of China (51190095)the Open Research Fund Program of State Key Laboratory of Hydro-science and Engineering(sklhse-2012-A03)
文摘This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.
基金supported by University of Galway,Galway,Ireland.
文摘Science and policy have been interlinked for decades and perform essential nexus conditions in the governing aspects of environmental scenarios.This review paper examines the present challenges in the science–policy interface in terms of water governance in the Caspian Sea and identifies effective conditions that may be used in the current context to enhance the mechanism.The evaluation of the science–policy link in the water policy of the Caspian Sea reveals a gap between knowledge producer and governance system,impeding the translation of scientific information into action.Complicated and context-dependent solutions make it challenging to establish effective science–policy processes in the Caspian Sea water governance settings.Establishing a common governing authority,implementing water and resource management regulations,and protecting the natural environment through legal frameworks are crucial steps to address these concerns and ensure sustainable development.Collaboration among coastal states is essential in environmental,economic,and social aspects of regional development.However,the lack of a comprehensive approach,coherent activities,and effective utilization of national and regional power has hindered efforts to halt the environmental degradation of the Caspian Sea.Local governments need to recognize their responsibility to protect and utilize the Caspian Sea for present and future generations,considering both environmental and human security.The interlinkage of the Caspian Sea water governance with the Organization for Economic Co-operation and Development(OECD)water governance principles offers a framework for policymakers to assess gaps and make necessary amendments to existing mechanisms.Effective science–policy interaction,engagement of diverse stakeholders,institutionalizing agreements,and addressing collective action issues are critical for successful water governance.