This paper discusses the methodological specialty of the theoretical investigation in the nanotechnology. In the nanotechnoscience, on the one hand, similar with the classical natural science are created explanatory s...This paper discusses the methodological specialty of the theoretical investigation in the nanotechnology. In the nanotechnoscience, on the one hand, similar with the classical natural science are created explanatory schemes of the natural phenomena and formulated predictions of the course of the definite natural events on the basis of mathematics and experimental data, and on the other, as in the engineering sciences are constructed not only the projects of the new experimental situations but also structural schemes of the new nanosystem unknown in nature and technology. The operation of nanotheory is realized by the iteration method. At first a special engineering problem is formulated. Then it is represented in the form of the structural scheme of the nanosystem which is transformed into the idea about the natural process reflecting its performance. To calculate and mathematically model this process a functional scheme is constructed. Consequently, the engineering problem is reformulated into a scientific one and then into a mathematical problem solved by the deductive method. This path from the bottom to the top represents the analysis of schemes (the bottom up approach). The way in the opposite direction--the synthesis of schemes (the top down approach)--makes it possible to synthesize the ideal model of a new nanosystem from idealized structural elements, according to the appropriate rules of deductive transformation, to calculate basic parameters of the nanosystem and simulate its function. Nanotechnology is at the same time a field of scientific knowledge and a sphere of engineering activity, in other words--nanotechnoscience--similar with systems engineering as the analysis and design of large-scale, complex, man-machine systems, but now as micro- and nanosystems. Scanning tunneling microscope in the nanoexperiment is not only an arrangement of scientific investigation but also at the same time a facility to fabricate the electrically conducting bridges between an electrode and the selected nanotubes and computer modeling and the design of different artifacts.展开更多
The early twenty-first century witnessed the publication of the book series Zhongguo kexue jishu shi中国科学技术史(History of science and technology in pre-modern China),which was initiated and organized by the Instit...The early twenty-first century witnessed the publication of the book series Zhongguo kexue jishu shi中国科学技术史(History of science and technology in pre-modern China),which was initiated and organized by the Institute for the History of Natural Sciences,Chinese Academy of Sciences,and compiled by a multitude of Chinese scholars.In comparison with Science and Civilisation in China by Dr.Joseph Needham,Zhongguo kexue jishu shi is superior in the layout characteristics,literature collection,research and explication,field investigation,and simulation experiments.展开更多
Geographic information science(GIScience)and remote sensing have long provided essential data and method-ological support for natural resource challenges and environmental problems research.With increasing advances in...Geographic information science(GIScience)and remote sensing have long provided essential data and method-ological support for natural resource challenges and environmental problems research.With increasing advances in information technology,natural resource and environmental science research faces the dual challenges of data and computational intensiveness.Therefore,the role of remote sensing and GIScience in the fields of natural resources and environmental science in this new information era is a key concern of researchers.This study clarifies the definition and frameworks of these two disciplines and discusses their role in natural resource and environmental research.GIScience is the discipline that studies the abstract and formal expressions of the basic concepts and laws of geography,and its research framework mainly consists of geo-modeling,geo-analysis,and geo-computation.Remote sensing is a comprehensive technology that deals with the mechanisms of human ef-fects on the natural ecological environment system by observing the earth surface system.Its main areas include sensors and platforms,information processing and interpretation,and natural resource and environmental appli-cations.GIScience and remote sensing provide data and methodological support for resource and environmental science research.They play essential roles in promoting the development of resource and environmental science and other related technologies.This paper provides forecasts of ten future directions for GIScience and eight future directions for remote sensing,which aim to solve issues related to natural resources and the environment.展开更多
It is the first time that the world’s first new method of farming,the"Fenlong farming technology,"has been systematically clarified,and the"Fenlong body integrating with natural science"has been c...It is the first time that the world’s first new method of farming,the"Fenlong farming technology,"has been systematically clarified,and the"Fenlong body integrating with natural science"has been created in terms of land resource activation,natural fertilization,natural water management,natural ecological improvement(including climate),and natural indirect activation of river water resources.Moreover,the"theory of Fenlong energy"has been established based on its effectiveness.The"theory of Fenlong energy"originates from the"multiplying and incremental utilization of three-dimensional spatial resources"in production practice.Its application to more than 40 kinds of crops such as rice,corn and wheat in 26 provinces including Guangxi,Xinjiang and Tibet shows that:the yield of arable land increases by 20%to 50%(the quality is improved by 5%),the yield of saline land increases by 20%to 100%,and it can retain 100%of water and resist or ease the disaster.The"theory of three-dimensional spatial resources","Fenlong science","Fenlong law"are the theoretical base for the establishment of the"theory of Fenlong energy".Based on the phenomena that the Fenlong crops have particularly developed root systems,white and more fibrous roots,and tall plants,it is proposed for the first time that Fenlong farming breaks the confinement of the bottom layer of the plow and realizes the holographic penetration of material,energy,and information flows,and there may be the speculation of"Fenlong dark matter flow".展开更多
The paper articulates the role of energy sector and its impact on the natural resources and biodiversity, focusing on traditional energy consumption in rural areas;renewable energy technology,gender dimension on rural...The paper articulates the role of energy sector and its impact on the natural resources and biodiversity, focusing on traditional energy consumption in rural areas;renewable energy technology,gender dimension on rural energy,the energy sector in its geo-political, social and economic settings as well as technology policy on integrating energy planning.It advocates how sub-Saharan Africans are展开更多
Knowledge of the environment is essential for the survival of organisms; but those organisms have to have the capacity to stabilize such knowledge. The aim of this article is to analyze the various strategies for stab...Knowledge of the environment is essential for the survival of organisms; but those organisms have to have the capacity to stabilize such knowledge. The aim of this article is to analyze the various strategies for stabilizing human knowledge, with a special focus on its material anchors and their interactions with other stabilization means. In particular, I consider how such stabilization is reflected in scientific activity and practice, and what its repercussions are for the models of science that have dominated the philosophical landscape of the 20th century. My starting hypothesis will be that the role of material anchors in stabilizing conceptual blends is analogous to that of technology in grounding scientific knowledge. The framework I adopt with regard to conceptualization is that of Fauconnier and Turner (2002) on conceptual blends. Just as technology intervenes in scientific practice in conjunction with conceptual elements, so do material anchors, which conjoin other non-material strategies of knowledge stabilization. Endowing knowledge with a material basis may be understood firstly as an element (sometimes a key element) for representing knowledge and offering an explanation, and secondly as a way of providing a scientific hypothesis with empirical grounding. It is this second sense that connects with scientific experimentation and the use of instruments and technology.展开更多
文摘This paper discusses the methodological specialty of the theoretical investigation in the nanotechnology. In the nanotechnoscience, on the one hand, similar with the classical natural science are created explanatory schemes of the natural phenomena and formulated predictions of the course of the definite natural events on the basis of mathematics and experimental data, and on the other, as in the engineering sciences are constructed not only the projects of the new experimental situations but also structural schemes of the new nanosystem unknown in nature and technology. The operation of nanotheory is realized by the iteration method. At first a special engineering problem is formulated. Then it is represented in the form of the structural scheme of the nanosystem which is transformed into the idea about the natural process reflecting its performance. To calculate and mathematically model this process a functional scheme is constructed. Consequently, the engineering problem is reformulated into a scientific one and then into a mathematical problem solved by the deductive method. This path from the bottom to the top represents the analysis of schemes (the bottom up approach). The way in the opposite direction--the synthesis of schemes (the top down approach)--makes it possible to synthesize the ideal model of a new nanosystem from idealized structural elements, according to the appropriate rules of deductive transformation, to calculate basic parameters of the nanosystem and simulate its function. Nanotechnology is at the same time a field of scientific knowledge and a sphere of engineering activity, in other words--nanotechnoscience--similar with systems engineering as the analysis and design of large-scale, complex, man-machine systems, but now as micro- and nanosystems. Scanning tunneling microscope in the nanoexperiment is not only an arrangement of scientific investigation but also at the same time a facility to fabricate the electrically conducting bridges between an electrode and the selected nanotubes and computer modeling and the design of different artifacts.
文摘The early twenty-first century witnessed the publication of the book series Zhongguo kexue jishu shi中国科学技术史(History of science and technology in pre-modern China),which was initiated and organized by the Institute for the History of Natural Sciences,Chinese Academy of Sciences,and compiled by a multitude of Chinese scholars.In comparison with Science and Civilisation in China by Dr.Joseph Needham,Zhongguo kexue jishu shi is superior in the layout characteristics,literature collection,research and explication,field investigation,and simulation experiments.
基金This work was supported by the National Natural Science Foundation of China(Grant No.L1924041,41525004)the Research Project on the Discipline Development Strategy of Academic Divisions of the Chinese Academy of Sciences(Grant No.XK2019DXC006).
文摘Geographic information science(GIScience)and remote sensing have long provided essential data and method-ological support for natural resource challenges and environmental problems research.With increasing advances in information technology,natural resource and environmental science research faces the dual challenges of data and computational intensiveness.Therefore,the role of remote sensing and GIScience in the fields of natural resources and environmental science in this new information era is a key concern of researchers.This study clarifies the definition and frameworks of these two disciplines and discusses their role in natural resource and environmental research.GIScience is the discipline that studies the abstract and formal expressions of the basic concepts and laws of geography,and its research framework mainly consists of geo-modeling,geo-analysis,and geo-computation.Remote sensing is a comprehensive technology that deals with the mechanisms of human ef-fects on the natural ecological environment system by observing the earth surface system.Its main areas include sensors and platforms,information processing and interpretation,and natural resource and environmental appli-cations.GIScience and remote sensing provide data and methodological support for resource and environmental science research.They play essential roles in promoting the development of resource and environmental science and other related technologies.This paper provides forecasts of ten future directions for GIScience and eight future directions for remote sensing,which aim to solve issues related to natural resources and the environment.
基金Supported by Special Fund Project of Guangxi Innovation Driven Development(Guike AA17204037,Guike 2020AA05002AA)Major Science and Technology Projects in Guangxi(Guike AA16380017)Team Project of Guangxi Academy of Agricultural Sciences(2015YT60)。
文摘It is the first time that the world’s first new method of farming,the"Fenlong farming technology,"has been systematically clarified,and the"Fenlong body integrating with natural science"has been created in terms of land resource activation,natural fertilization,natural water management,natural ecological improvement(including climate),and natural indirect activation of river water resources.Moreover,the"theory of Fenlong energy"has been established based on its effectiveness.The"theory of Fenlong energy"originates from the"multiplying and incremental utilization of three-dimensional spatial resources"in production practice.Its application to more than 40 kinds of crops such as rice,corn and wheat in 26 provinces including Guangxi,Xinjiang and Tibet shows that:the yield of arable land increases by 20%to 50%(the quality is improved by 5%),the yield of saline land increases by 20%to 100%,and it can retain 100%of water and resist or ease the disaster.The"theory of three-dimensional spatial resources","Fenlong science","Fenlong law"are the theoretical base for the establishment of the"theory of Fenlong energy".Based on the phenomena that the Fenlong crops have particularly developed root systems,white and more fibrous roots,and tall plants,it is proposed for the first time that Fenlong farming breaks the confinement of the bottom layer of the plow and realizes the holographic penetration of material,energy,and information flows,and there may be the speculation of"Fenlong dark matter flow".
文摘The paper articulates the role of energy sector and its impact on the natural resources and biodiversity, focusing on traditional energy consumption in rural areas;renewable energy technology,gender dimension on rural energy,the energy sector in its geo-political, social and economic settings as well as technology policy on integrating energy planning.It advocates how sub-Saharan Africans are
文摘Knowledge of the environment is essential for the survival of organisms; but those organisms have to have the capacity to stabilize such knowledge. The aim of this article is to analyze the various strategies for stabilizing human knowledge, with a special focus on its material anchors and their interactions with other stabilization means. In particular, I consider how such stabilization is reflected in scientific activity and practice, and what its repercussions are for the models of science that have dominated the philosophical landscape of the 20th century. My starting hypothesis will be that the role of material anchors in stabilizing conceptual blends is analogous to that of technology in grounding scientific knowledge. The framework I adopt with regard to conceptualization is that of Fauconnier and Turner (2002) on conceptual blends. Just as technology intervenes in scientific practice in conjunction with conceptual elements, so do material anchors, which conjoin other non-material strategies of knowledge stabilization. Endowing knowledge with a material basis may be understood firstly as an element (sometimes a key element) for representing knowledge and offering an explanation, and secondly as a way of providing a scientific hypothesis with empirical grounding. It is this second sense that connects with scientific experimentation and the use of instruments and technology.