Due to the depletion of conventional hydrocarbon resources,both China and Russia are giving more attention to the exploration and production of unconventional oil and gas resources,especially those generated and accum...Due to the depletion of conventional hydrocarbon resources,both China and Russia are giving more attention to the exploration and production of unconventional oil and gas resources,especially those generated and accumulated within source rocks.In an attempt to further understand the mechanisms of these resources,detailed mineralogical,lithological,and geochemical studies were performed to compare source rock samples from i)the Longmaxi Formation of the Lower Silurian in the Sichuan Basin(China),and ii)the Semiluksk Formation of the Frasnian Stage of the Upper Devonian in the Volga-Ural region of the East European Platform(Russia).The results showed that the main mineral of the source rocks of both formations is chalcedony that formed during an outpouring of deep fluids onto the sea bed.Simultaneous thermal analyses of this mineral indicated similar thermophysical properties to those of the hydrothermal-sedimentary chalcedony from jasper.Moreover,a direct relationship between the chalcedony content and the total organic matter content in the samples from the two formations was established.The presence of biophilic chemical elements in the siliceous component of the source rock samples indicate that high total organic content values were likely due to the presence of biophilic chemical elements in deep fluids,which led to the large-scale development of biota and subsequent accumulation of organic matter during sedimentation.The findings also revealed that the organic matter in the source rocks of the two regions was at different stages of maturity.The organic matter in samples from the Volga-Ural region was less mature and only at the early stage of oil generation,whereas the organic matter in samples from the Sichuan Basin reached both oil and gas generation stages.The Longmaxi Formation is already in the shale gas exploration and development stage,and the Semiluksk Formation could also be regarded as an exploration target for shale oil reservoirs.展开更多
(U-Th)/He dating is a newly developed low temperature thermochronometry, and it elaborately reflects cooling history of geologic body under low temperature. It can be applied to analyze thermal evolution of the sedi...(U-Th)/He dating is a newly developed low temperature thermochronometry, and it elaborately reflects cooling history of geologic body under low temperature. It can be applied to analyze thermal evolution of the sedimentary basin, combining with vitrinite reflectance and fission track. (U-Th)/He dating of apatite and zircon from drilling cores in Puguang (普光)-Maoba (毛坝) area and outcrops in Tongjiang (通江) area indicates that the Northeast Sichuan (四川) basin underwent great uplift and denudation during the Tertiary and the Quaternary. During the period, denudation rates changed from 74.8 to 172.5 m/Ma and denudation thickness was between 2 800 and 3 000 m, geotemperature gradually declined into the current temperature, passing through helium closure temperature of apatite. The uplift and denudation relate to new tectonic movement response in the Sichuan basin aroused by the Qinghai (青海)-Tibet plateau. Drilling samples above 4 000 m did not undergo closure temperature of zircon, but the samples nearly 4 000 m might approach closure temperature of zircon and all the samples underwent closure temperature of apatite. According to (U-Th)/He ages of zircon, it is concluded that the Northeast Sichuan basin began to uplift in the Late Jurassic. From the Late Jurassic to the Paleogene, Northeast Sichuan basin was in slow uplift and denudation, but the denudation of Puguang-Maoba area was earlier than that of Tongjiang area. (U-Th)/He ages of zircon indicate the denudation time of provenance areas. On the basis of paleodrainage characteristics, provenance transport and other related data, provenance areas of the clastie rocks are decided, which is worthy to be investigated further.展开更多
The Yuanba (元坝) area is considered another potential large-scale reef-bank gas field following the Puguang (普光) field. However, there are lots of difficulties on the spatial and temporal distribution of reef-b...The Yuanba (元坝) area is considered another potential large-scale reef-bank gas field following the Puguang (普光) field. However, there are lots of difficulties on the spatial and temporal distribution of reef-beach and the detailed prediction of the effective reservoir in the sequence stratigraphic framework. In this paper, based on the seismic data, well, log and core, we conduct a high-resolution sequence division and build an isochronal sequence stratigraphic framework for the Changxing (长兴) Formation by the methods of wavelet transformation, FMI, etc.. Then, the corresponding relationship among the lithologic facies, logging facies, seismic facies, seismic attribute facies and reservoir of Changxing Formation were established through well-seismic calibration and geological-geophysical modeling. Furthermore, detailed study on the spatial and temporal distribution of microfacies of the reef-beach was carried out by means of seismic attribute extraction. Meanwhile,combined with impedance inversion, the spatial distribution of porosity of reef-beach reservoir was predicted. The results show that the revolution of the reef-beach system contains three stages which are initial bioclastic bank establishment stage, reef development stage and exposure stage. Also, porosity inversion shows that the region with high value of porosity is located in the reef cap, fore reef and back reef.Seismic Sedimentology Study in the High-Resolution Sequence Framework展开更多
With the discoveries of a series of large gas fields in the northeast of Sichuan Basin, such as Puguang and Longgang gas fields, the formation mechanism of the gas reservoir containing high H2S in the ancient marine c...With the discoveries of a series of large gas fields in the northeast of Sichuan Basin, such as Puguang and Longgang gas fields, the formation mechanism of the gas reservoir containing high H2S in the ancient marine carbonate formation in superposition-basin becomes a hot topic in the field of petroleum geology. Based on the structure inversion, numerical simulation, and geochemical research, we show at least two intervals of fluid transfer in Puguang paleo-oil reservoir, one in the forepart of late Indo-Chinese epoch to early Yanshan epoch and the other in the metaphase of early Yanshan epoch. Oil and gas accumulation occurred at Puguang structure through Puguang-Dongyuezhai faults and dolomite beds in reef and shoal facies in Changxing Formation (P2ch) - Feixianguan Formation (T1f) in the northwest and southwest directions along three main migration pathways, to form Puguang paleo-oil reservoir. Since crude oil is pyrolysised in the early stage of middle Yanshan epoch, Puguang gas reservoir has experienced fluid adjusting process controlled by tectonic movement and geochemical reconstruction process controlled by thermochemical sulfate reduction (TSR). Middle Yan-shan epoch is the main period during which the Puguang gas reservoir experienced the geochemical reaction of TSR. On one hand, TSR can recreate the fluid in gas reservoir, which makes the gas drying index larger and carbon isotope heavier. On the other hand, the reciprocity between fluid regarding TSR (hydrocarbon, H2S, and water) and reservoir rock induces erosion of the reservoir rocks and anhydrite alteration, which improves reservoir petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.展开更多
The large reef complexes of the Upper Permian Changxing Formation, with a significant breakthrough for petroleum exploration, are an important target for petroleum exploration in the Yuanba area of the Sichuan Basin i...The large reef complexes of the Upper Permian Changxing Formation, with a significant breakthrough for petroleum exploration, are an important target for petroleum exploration in the Yuanba area of the Sichuan Basin in SW China. The storage space types of reef complexes are dominated by the dissolved pore-fracture(DPF). However, using only single geophysical methods, it is difficult to predict effective distribution of DPF. Based on a combination of geological models and geophysics technology, this study proposes two new geophysical methods, including anisotropy coherence technique(ACT) and fracture intensity inversion(FII), to research the characteristics of DPF by faciescontrolling in Changxing Formation in Yuanba area. Two major findings are presented as follows:(1) the characteristics of DPF varying with facies are the result of different diagenetic and petrophysical property. The intensity of DPF decreases from reef and bioclastic bank to interbank sea and slope;(2) ACT can qualitatively identify the distribution of DPF with no-directional and dispersed distribution, while FII can quantitatively characterize the intensity of DPF development within various sedimentary facies. When integrated into the geological study, ACT and FII can provide an effective way to predict the distribution of DPF in similar geological settings and the predicted DPF have been supported by the historical well data.展开更多
基金supported by grants from the Russian Foundation for Basic Research(project No.18-35-00136)the Chinese NSFC(project No.41811530094)+1 种基金the Government of the Republic of Tatarstan(project No.18-45-160003)supported by subsidies allocated as part of the state’s support for the Kazan Federal University in order to increase its global competitiveness in leading research and educational centers.
文摘Due to the depletion of conventional hydrocarbon resources,both China and Russia are giving more attention to the exploration and production of unconventional oil and gas resources,especially those generated and accumulated within source rocks.In an attempt to further understand the mechanisms of these resources,detailed mineralogical,lithological,and geochemical studies were performed to compare source rock samples from i)the Longmaxi Formation of the Lower Silurian in the Sichuan Basin(China),and ii)the Semiluksk Formation of the Frasnian Stage of the Upper Devonian in the Volga-Ural region of the East European Platform(Russia).The results showed that the main mineral of the source rocks of both formations is chalcedony that formed during an outpouring of deep fluids onto the sea bed.Simultaneous thermal analyses of this mineral indicated similar thermophysical properties to those of the hydrothermal-sedimentary chalcedony from jasper.Moreover,a direct relationship between the chalcedony content and the total organic matter content in the samples from the two formations was established.The presence of biophilic chemical elements in the siliceous component of the source rock samples indicate that high total organic content values were likely due to the presence of biophilic chemical elements in deep fluids,which led to the large-scale development of biota and subsequent accumulation of organic matter during sedimentation.The findings also revealed that the organic matter in the source rocks of the two regions was at different stages of maturity.The organic matter in samples from the Volga-Ural region was less mature and only at the early stage of oil generation,whereas the organic matter in samples from the Sichuan Basin reached both oil and gas generation stages.The Longmaxi Formation is already in the shale gas exploration and development stage,and the Semiluksk Formation could also be regarded as an exploration target for shale oil reservoirs.
基金supported by the National Basic Research Pro-gram of China (No. 2005CB422102)China Petroleum and Chemical Corporation Program (P06083)
文摘(U-Th)/He dating is a newly developed low temperature thermochronometry, and it elaborately reflects cooling history of geologic body under low temperature. It can be applied to analyze thermal evolution of the sedimentary basin, combining with vitrinite reflectance and fission track. (U-Th)/He dating of apatite and zircon from drilling cores in Puguang (普光)-Maoba (毛坝) area and outcrops in Tongjiang (通江) area indicates that the Northeast Sichuan (四川) basin underwent great uplift and denudation during the Tertiary and the Quaternary. During the period, denudation rates changed from 74.8 to 172.5 m/Ma and denudation thickness was between 2 800 and 3 000 m, geotemperature gradually declined into the current temperature, passing through helium closure temperature of apatite. The uplift and denudation relate to new tectonic movement response in the Sichuan basin aroused by the Qinghai (青海)-Tibet plateau. Drilling samples above 4 000 m did not undergo closure temperature of zircon, but the samples nearly 4 000 m might approach closure temperature of zircon and all the samples underwent closure temperature of apatite. According to (U-Th)/He ages of zircon, it is concluded that the Northeast Sichuan basin began to uplift in the Late Jurassic. From the Late Jurassic to the Paleogene, Northeast Sichuan basin was in slow uplift and denudation, but the denudation of Puguang-Maoba area was earlier than that of Tongjiang area. (U-Th)/He ages of zircon indicate the denudation time of provenance areas. On the basis of paleodrainage characteristics, provenance transport and other related data, provenance areas of the clastie rocks are decided, which is worthy to be investigated further.
基金supported by the SINOPEC Group Project (No. 2009026324)
文摘The Yuanba (元坝) area is considered another potential large-scale reef-bank gas field following the Puguang (普光) field. However, there are lots of difficulties on the spatial and temporal distribution of reef-beach and the detailed prediction of the effective reservoir in the sequence stratigraphic framework. In this paper, based on the seismic data, well, log and core, we conduct a high-resolution sequence division and build an isochronal sequence stratigraphic framework for the Changxing (长兴) Formation by the methods of wavelet transformation, FMI, etc.. Then, the corresponding relationship among the lithologic facies, logging facies, seismic facies, seismic attribute facies and reservoir of Changxing Formation were established through well-seismic calibration and geological-geophysical modeling. Furthermore, detailed study on the spatial and temporal distribution of microfacies of the reef-beach was carried out by means of seismic attribute extraction. Meanwhile,combined with impedance inversion, the spatial distribution of porosity of reef-beach reservoir was predicted. The results show that the revolution of the reef-beach system contains three stages which are initial bioclastic bank establishment stage, reef development stage and exposure stage. Also, porosity inversion shows that the region with high value of porosity is located in the reef cap, fore reef and back reef.Seismic Sedimentology Study in the High-Resolution Sequence Framework
基金Supported by National Basic Research Program of China (Grant No. 2005CB422105)
文摘With the discoveries of a series of large gas fields in the northeast of Sichuan Basin, such as Puguang and Longgang gas fields, the formation mechanism of the gas reservoir containing high H2S in the ancient marine carbonate formation in superposition-basin becomes a hot topic in the field of petroleum geology. Based on the structure inversion, numerical simulation, and geochemical research, we show at least two intervals of fluid transfer in Puguang paleo-oil reservoir, one in the forepart of late Indo-Chinese epoch to early Yanshan epoch and the other in the metaphase of early Yanshan epoch. Oil and gas accumulation occurred at Puguang structure through Puguang-Dongyuezhai faults and dolomite beds in reef and shoal facies in Changxing Formation (P2ch) - Feixianguan Formation (T1f) in the northwest and southwest directions along three main migration pathways, to form Puguang paleo-oil reservoir. Since crude oil is pyrolysised in the early stage of middle Yanshan epoch, Puguang gas reservoir has experienced fluid adjusting process controlled by tectonic movement and geochemical reconstruction process controlled by thermochemical sulfate reduction (TSR). Middle Yan-shan epoch is the main period during which the Puguang gas reservoir experienced the geochemical reaction of TSR. On one hand, TSR can recreate the fluid in gas reservoir, which makes the gas drying index larger and carbon isotope heavier. On the other hand, the reciprocity between fluid regarding TSR (hydrocarbon, H2S, and water) and reservoir rock induces erosion of the reservoir rocks and anhydrite alteration, which improves reservoir petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.
基金supported by the National Science and Technology Major Project of China (Nos. 2011ZX05025-002-02-05)the National Natural Science Foundation of China (Nos. 41202086, 41202087, 41102068)
文摘The large reef complexes of the Upper Permian Changxing Formation, with a significant breakthrough for petroleum exploration, are an important target for petroleum exploration in the Yuanba area of the Sichuan Basin in SW China. The storage space types of reef complexes are dominated by the dissolved pore-fracture(DPF). However, using only single geophysical methods, it is difficult to predict effective distribution of DPF. Based on a combination of geological models and geophysics technology, this study proposes two new geophysical methods, including anisotropy coherence technique(ACT) and fracture intensity inversion(FII), to research the characteristics of DPF by faciescontrolling in Changxing Formation in Yuanba area. Two major findings are presented as follows:(1) the characteristics of DPF varying with facies are the result of different diagenetic and petrophysical property. The intensity of DPF decreases from reef and bioclastic bank to interbank sea and slope;(2) ACT can qualitatively identify the distribution of DPF with no-directional and dispersed distribution, while FII can quantitatively characterize the intensity of DPF development within various sedimentary facies. When integrated into the geological study, ACT and FII can provide an effective way to predict the distribution of DPF in similar geological settings and the predicted DPF have been supported by the historical well data.