Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous,and lower in High Field Strength Elements (HFSE).These rocks are higher in La...Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous,and lower in High Field Strength Elements (HFSE).These rocks are higher in Large Ion Lithophile Elements (LILE),thorium and uranium contents,positive lead anomalies,negative Nb-Ta anomalies,and enrichment in Light Rare Earth Elements (LREE).Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB),and rhyolites from the northern Okinawa Trough have the highest 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios.The NECS shelf margin basalts have lower 87 Sr/ 86 Sr ratios,ε N d and σ 18 O than the northern Okinawa Trough silicic rocks.According to 40 K– 40 Ar isotopic ages of basalts from the NECS shelf margin,rifting of the Okinawa Trough may have been active since at least 3.65–3.86 Ma.The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere.The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough,and the formation of basaltic magmas closely relates to the thinning of continental crust.The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough,which could have been generated by the interaction of basaltic melt with an enriched crustal component.From the Ryukyu island arc to East China,the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE),suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate,and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.展开更多
The Middle Devonian volcanic rocks in the northern area of East Junggar, located between the Ertix andUlungur rivers of northern Xinjiang, may be divided into basic and acid ones. It is evident that a compositionalgap...The Middle Devonian volcanic rocks in the northern area of East Junggar, located between the Ertix andUlungur rivers of northern Xinjiang, may be divided into basic and acid ones. It is evident that a compositionalgap exists between the two groups so that the volcanic rocks are not in line with a calc-alkaline series becausethe intermediate rocks are absent in the area. The fact shows that the volcanic rocks are a typical bimodal asso-ciation. The formation of the bimodal association of volcanic rocks in the area was closely related to continen-tal rifting or continental extension in the Middle Devonian. In such a tectonic setting, magmas were first pro-duced by partial melting of the mantle. Where crustal thinning was greater, the magmas ascended and eruptedon the surface directly so that the basic volcanic rocks formed, but olivine and/or partial pyroxenefractionation occurred in the magmas during their ascent through the thinning crust. On the other hand, wherecrustal thinning was less, ascending mantle-derived magmas reached the lower crust and accumulated there, re-sulting in partial melting of the lower crust and thus giving rise to the contaminated magma which was consoli-dated as acid volcanic rocks on the surface.展开更多
基金The Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences under contract Nos KZCX2- YW-211 and KZCX3-SW-223the National Natural Science Foundation of China under contract Nos 40830849 and 40976027+1 种基金Shandong Province Natural Science Foundation of China for Distinguished Young Scholars under contract No.JQ200913the National Major Fundamental Research and Development Project under contract No.G2000046701
文摘Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous,and lower in High Field Strength Elements (HFSE).These rocks are higher in Large Ion Lithophile Elements (LILE),thorium and uranium contents,positive lead anomalies,negative Nb-Ta anomalies,and enrichment in Light Rare Earth Elements (LREE).Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB),and rhyolites from the northern Okinawa Trough have the highest 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios.The NECS shelf margin basalts have lower 87 Sr/ 86 Sr ratios,ε N d and σ 18 O than the northern Okinawa Trough silicic rocks.According to 40 K– 40 Ar isotopic ages of basalts from the NECS shelf margin,rifting of the Okinawa Trough may have been active since at least 3.65–3.86 Ma.The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere.The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough,and the formation of basaltic magmas closely relates to the thinning of continental crust.The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough,which could have been generated by the interaction of basaltic melt with an enriched crustal component.From the Ryukyu island arc to East China,the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE),suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate,and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.
文摘The Middle Devonian volcanic rocks in the northern area of East Junggar, located between the Ertix andUlungur rivers of northern Xinjiang, may be divided into basic and acid ones. It is evident that a compositionalgap exists between the two groups so that the volcanic rocks are not in line with a calc-alkaline series becausethe intermediate rocks are absent in the area. The fact shows that the volcanic rocks are a typical bimodal asso-ciation. The formation of the bimodal association of volcanic rocks in the area was closely related to continen-tal rifting or continental extension in the Middle Devonian. In such a tectonic setting, magmas were first pro-duced by partial melting of the mantle. Where crustal thinning was greater, the magmas ascended and eruptedon the surface directly so that the basic volcanic rocks formed, but olivine and/or partial pyroxenefractionation occurred in the magmas during their ascent through the thinning crust. On the other hand, wherecrustal thinning was less, ascending mantle-derived magmas reached the lower crust and accumulated there, re-sulting in partial melting of the lower crust and thus giving rise to the contaminated magma which was consoli-dated as acid volcanic rocks on the surface.