The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with e...The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with elevated overpotentials,thereby imposing additional constraints on its utilization.Therefore,the pre-design and target-development of inexpensive,high-performance,and long-term stable bifunctional catalysts are urgently needed.In this work,an apically guiding dual-functional electrocatalyst(Ag-FeN_(x)-N-C)was prepared,in which a hierarchical porous nitrogen-doped carbon with three-dimensional(3D)hollow star-shaped structure is used as a substrate and high-conductivity Ag nanoparticles are coupled with iron nitride(FeN_(x))nanoparticles.Theoretical calculations indicate that the Mott-Schottky heterojunction as an inherent electric field comes from the two-phase bound of Ag and FeN_(x),of which electron accumulation in the FeN_(x)phase region and electron depletion in the Ag phase region promote orientated-guiding charge migration.The effective modulation of local electronic structures felicitously reforms the d-band electron-group distribution,and intellectually tunes the masstransfer reaction energy barriers for both ORR/OER.Additionally,the hollow star-s haped hierarchical porous structure provides an apical region for fast mass transfer.Experimental results show that the halfwave potential for ORR is 0.914 V,and the overpotential for OER is only 327 mV at 10 mA cm^(-2).A rechargeable ZAB with Ag-FeN_(x)-N-C as the air cathode demonstrates long-term cycling performance exceeding 1500 cycles(500 h),with a power density of 180 mW cm^(-2).Moreover,when employing AgFeN_(x)-N-C as the air cathode,flexible ZABs demonstrate a notable open-circuit voltage of 1.42 V and achieve a maximum power density of 65.6 mW cm^(-2).Ag-FeN_(x)-N-C shows guiding electron/mass transfer route and apical reaction microenvironment for the electrocatalyst architecture in the exploration prospects of ZABs.展开更多
The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbit...The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbits. Demonstrating significantly higher efficiency, this advanced method is capable of accomplishing the simulation in less than one-third of the time of directly computing the guiding center motion. In contrast to the CPP-based Boris algorithm, this approach inherits the advantages of the AVF method, yielding stable trajectories even achieved with a tenfold time step and reducing the energy error by two orders of magnitude. By comparing these two CPP algorithms with the traditional RK4 method, the numerical results indicate a remarkable performance in terms of both the computational efficiency and error elimination. Moreover, we verify the properties of slow manifold integrators and successfully observe the bounce on both sides of the limiting slow manifold with deliberately chosen perturbed initial conditions. To evaluate the practical value of the methods, we conduct simulations in non-axisymmetric perturbation magnetic fields as part of the experiments,demonstrating that our CPP-based AVF method can handle simulations under complex magnetic field configurations with high accuracy, which the CPP-based Boris algorithm lacks. Through numerical experiments, we demonstrate that the CPP can replace guiding center dynamics in using energy-preserving algorithms for computations, providing a new, efficient, as well as stable approach for applying structure-preserving algorithms in plasma simulations.展开更多
The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of...The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of Advanced Geochemistry has effectively stimulated students’interest in learning and further improved their scientific thinking and research innovation skills through the implementation of“Guiding Interactive”teaching reform measures,which has important theoretical significance and practical value.展开更多
We develop two types of adaptive energy preserving algorithms based on the averaged vector field for the guiding center dynamics,which plays a key role in magnetized plasmas.The adaptive scheme is applied to the Gauss...We develop two types of adaptive energy preserving algorithms based on the averaged vector field for the guiding center dynamics,which plays a key role in magnetized plasmas.The adaptive scheme is applied to the Gauss Legendre’s quadrature rules and time stepsize respectively to overcome the energy drift problem in traditional energy-preserving algorithms.These new adaptive algorithms are second order,and their algebraic order is carefully studied.Numerical results show that the global energy errors are bounded to the machine precision over long time using these adaptive algorithms without massive extra computation cost.展开更多
Article Article types Articles commonly fall into one of three main categories:Full-length articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of...Article Article types Articles commonly fall into one of three main categories:Full-length articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of work that has been published previously in short form such as a Communication are usually acceptable.展开更多
Introduction Types of paper Contributions falling into the following categories will be considered for publication: Original research papers, reviews, Research Notes, Short Communication, New technologies, News and Vi...Introduction Types of paper Contributions falling into the following categories will be considered for publication: Original research papers, reviews, Research Notes, Short Communication, New technologies, News and Views, Commentary on significant events and topics in global horticultural fields with international interests.展开更多
Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,reviews,perspectives,news and views,case reports,letters.
Introduction Typesof paper Contributions falling into the following categories will be considered for publication:Original research papers,reviews,perspectives,news and views,case reports,letters.
INTRODUCTION Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,reviews and short communications.Please ensure that you select the appropriat...INTRODUCTION Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,reviews and short communications.Please ensure that you select the appropriate article type from the list of options when making your submission.Authors contributing to special issues should ensure that they select the special issue article type from this list.展开更多
INTRODUCTION.Types of paper.Contributions falling into the following categories will be considered for publication:Original research papers,reviews and short communications.Please ensure that you select the appropriat...INTRODUCTION.Types of paper.Contributions falling into the following categories will be considered for publication:Original research papers,reviews and short communications.Please ensure that you select the appropriate article type from the list of options when making your submission.Authors contributing to special issues should ensure that they select the special issue article type from this list.展开更多
INTRODUCTION Types of paper Contributions falling into the following categories will be considered for publication:Original research papers, reviews and short communications.Please ensure that you select the appropria...INTRODUCTION Types of paper Contributions falling into the following categories will be considered for publication:Original research papers, reviews and short communications.Please ensure that you select the appropriate article type from the list of options when making your submission. Authors contributing to special issues should ensure that they select the special issue article type from this list.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,Reviews,Short communication.Please ensure that you select the appropriate art...Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,Reviews,Short communication.Please ensure that you select the appropriate article type from the list of options when making your submission.Authors contributing to special issues should ensure that they select the special issue article type from this list.展开更多
Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,Reviews,Short communication.Please ensure that you select the appropriate art...Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,Reviews,Short communication.Please ensure that you select the appropriate article type from the list of options when making your submission.Authors contributing to special issues should ensure that they select the special issue article type from this list。展开更多
Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,Reviews,Short communication.Please ensure that you select the appropriate art...Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,Reviews,Short communication.Please ensure that you select the appropriate article type from the list of options when making your submission.Authors contributing to special issues should ensure that they select the special issue article type from this list.展开更多
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve...Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.展开更多
In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this pr...In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized.展开更多
基金the financial support of the National Natural Science Foundation of China(52002079,22378074,22179025 and U20A20340)the Guangdong Basic and Applied Basic Research Foundation(2022A1515140085)+2 种基金the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202209)the Guangzhou Hongmian Project(HMJH-20200012)the Foshan Introducing Innovative and Entrepreneurial Teams(1920001000108)。
文摘The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with elevated overpotentials,thereby imposing additional constraints on its utilization.Therefore,the pre-design and target-development of inexpensive,high-performance,and long-term stable bifunctional catalysts are urgently needed.In this work,an apically guiding dual-functional electrocatalyst(Ag-FeN_(x)-N-C)was prepared,in which a hierarchical porous nitrogen-doped carbon with three-dimensional(3D)hollow star-shaped structure is used as a substrate and high-conductivity Ag nanoparticles are coupled with iron nitride(FeN_(x))nanoparticles.Theoretical calculations indicate that the Mott-Schottky heterojunction as an inherent electric field comes from the two-phase bound of Ag and FeN_(x),of which electron accumulation in the FeN_(x)phase region and electron depletion in the Ag phase region promote orientated-guiding charge migration.The effective modulation of local electronic structures felicitously reforms the d-band electron-group distribution,and intellectually tunes the masstransfer reaction energy barriers for both ORR/OER.Additionally,the hollow star-s haped hierarchical porous structure provides an apical region for fast mass transfer.Experimental results show that the halfwave potential for ORR is 0.914 V,and the overpotential for OER is only 327 mV at 10 mA cm^(-2).A rechargeable ZAB with Ag-FeN_(x)-N-C as the air cathode demonstrates long-term cycling performance exceeding 1500 cycles(500 h),with a power density of 180 mW cm^(-2).Moreover,when employing AgFeN_(x)-N-C as the air cathode,flexible ZABs demonstrate a notable open-circuit voltage of 1.42 V and achieve a maximum power density of 65.6 mW cm^(-2).Ag-FeN_(x)-N-C shows guiding electron/mass transfer route and apical reaction microenvironment for the electrocatalyst architecture in the exploration prospects of ZABs.
基金supported by National Natural Science Foundation of China (Nos. 11975068 and 11925501)the National Key R&D Program of China (No. 2022YFE03090000)the Fundamental Research Funds for the Central Universities (No. DUT22ZD215)。
文摘The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbits. Demonstrating significantly higher efficiency, this advanced method is capable of accomplishing the simulation in less than one-third of the time of directly computing the guiding center motion. In contrast to the CPP-based Boris algorithm, this approach inherits the advantages of the AVF method, yielding stable trajectories even achieved with a tenfold time step and reducing the energy error by two orders of magnitude. By comparing these two CPP algorithms with the traditional RK4 method, the numerical results indicate a remarkable performance in terms of both the computational efficiency and error elimination. Moreover, we verify the properties of slow manifold integrators and successfully observe the bounce on both sides of the limiting slow manifold with deliberately chosen perturbed initial conditions. To evaluate the practical value of the methods, we conduct simulations in non-axisymmetric perturbation magnetic fields as part of the experiments,demonstrating that our CPP-based AVF method can handle simulations under complex magnetic field configurations with high accuracy, which the CPP-based Boris algorithm lacks. Through numerical experiments, we demonstrate that the CPP can replace guiding center dynamics in using energy-preserving algorithms for computations, providing a new, efficient, as well as stable approach for applying structure-preserving algorithms in plasma simulations.
基金This article is the research result of the Education and Teaching Reform Research Project(No.2022JGB038)of Central South University and supported by the Scientific Research Fund of Hunan Provincial Education Department(No.23B0953).
文摘The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of Advanced Geochemistry has effectively stimulated students’interest in learning and further improved their scientific thinking and research innovation skills through the implementation of“Guiding Interactive”teaching reform measures,which has important theoretical significance and practical value.
基金supported by National Natural Science Foundation of China(Nos.11901564,11775222 and 12171466)Geo-Algorithmic Plasma Simulator(GAPS)Project。
文摘We develop two types of adaptive energy preserving algorithms based on the averaged vector field for the guiding center dynamics,which plays a key role in magnetized plasmas.The adaptive scheme is applied to the Gauss Legendre’s quadrature rules and time stepsize respectively to overcome the energy drift problem in traditional energy-preserving algorithms.These new adaptive algorithms are second order,and their algebraic order is carefully studied.Numerical results show that the global energy errors are bounded to the machine precision over long time using these adaptive algorithms without massive extra computation cost.
文摘Article Article types Articles commonly fall into one of three main categories:Full-length articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of work that has been published previously in short form such as a Communication are usually acceptable.
文摘Introduction Types of paper Contributions falling into the following categories will be considered for publication: Original research papers, reviews, Research Notes, Short Communication, New technologies, News and Views, Commentary on significant events and topics in global horticultural fields with international interests.
文摘Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,reviews,perspectives,news and views,case reports,letters.
文摘Introduction Typesof paper Contributions falling into the following categories will be considered for publication:Original research papers,reviews,perspectives,news and views,case reports,letters.
文摘INTRODUCTION Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,reviews and short communications.Please ensure that you select the appropriate article type from the list of options when making your submission.Authors contributing to special issues should ensure that they select the special issue article type from this list.
文摘INTRODUCTION.Types of paper.Contributions falling into the following categories will be considered for publication:Original research papers,reviews and short communications.Please ensure that you select the appropriate article type from the list of options when making your submission.Authors contributing to special issues should ensure that they select the special issue article type from this list.
文摘INTRODUCTION Types of paper Contributions falling into the following categories will be considered for publication:Original research papers, reviews and short communications.Please ensure that you select the appropriate article type from the list of options when making your submission. Authors contributing to special issues should ensure that they select the special issue article type from this list.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
文摘Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,Reviews,Short communication.Please ensure that you select the appropriate article type from the list of options when making your submission.Authors contributing to special issues should ensure that they select the special issue article type from this list.
文摘Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,Reviews,Short communication.Please ensure that you select the appropriate article type from the list of options when making your submission.Authors contributing to special issues should ensure that they select the special issue article type from this list。
文摘Introduction Types of paper Contributions falling into the following categories will be considered for publication:Original research papers,Reviews,Short communication.Please ensure that you select the appropriate article type from the list of options when making your submission.Authors contributing to special issues should ensure that they select the special issue article type from this list.
基金the financial support provided by USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA)through the Competitive Academic Agreement Program (CAAP)。
文摘Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.
基金supported by the Natural Science Foundation of Beijing Municipality(Grant No.4212003)the Crossdisciplinary Collaboration Project of Beijing Municipal Science and Technology New Star Program(Grant No.202111)。
文摘In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized.