期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
The accumulation characteristics and exploration potential of oil and gas in the back-arc basin of Japan under the background of high heat flow
1
作者 Jian-qiang Wang Jie Liang +10 位作者 Jian-wen Chen Qing-fang Zhao Yin-guo Zhang Jian-wei Zhang Sen Li Chang-qing Yang Jian Zhang Jing Sun Chuan-sheng Yang Yong Yuan Lee-Jel Jiang 《China Geology》 CAS CSCD 2023年第4期660-675,共16页
The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environ... The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environment is complex, forming a typical trench-arc-basin system. At present, 148 oil and gas fields have been discovered in Japan, with an oil and gas resource of 255.78×10^(6) t, showing a good prospect for oil and gas exploration. Based on the previous research and the recently collected geological and geophysical data, the characteristics of tectonic-sedimentary evolution and geothermal field in the basins around the Sea of Japan are analyzed. The results show that the tectonic evolution of the basin is mainly controlled by plate subduction and back-arc oceanic crust expansion, and it mainly undergone four tectonic-sedimentary evolution stages: Subduction period, basin development period, subsidence period and compression deformation period. The overall heat flow value of Japan Sea is high, and it is distributed annularly along Yamato Ridge. The geothermal heat flow value is about 50–130 MW/m^(2), and the average heat flow is75.9±19.8 MW/m^(2), which has a typical “hot basin ”. The high heat flow background provides unique thermal evolution conditions for hydrocarbon generation, which leads to the high temperature and rapid evolution. The authors summarized as “early hydrocarbon generation, rapid maturity and shallow and narrow hydrocarbon generation window”. The type of oil and gas is mainly natural gas, and it mainly distributed in Neogene oil and gas reservoirs. The trap types are mainly structural traps, lithologic traps and composite traps. In addition, the pre-Neogene bedrock oil and gas reservoirs also show a good exploration prospect. The resource prospecting indicates that Niigata Basin, Ulleung Basin and kitakami Basin are the main target areas for future exploration and development. 展开更多
关键词 oil and gas Hydrocarbon generation capacity Back-arc basin Geothermal field Tectono-sedimentary evolution Hydrocarbon accumulation the Sea of Japan Western Pacific
下载PDF
Formation conditions and exploration direction of large natural gas reservoirs in the oil-prone Bohai Bay Basin, East China 被引量:1
2
作者 XUE Yong’an WANG Deying 《Petroleum Exploration and Development》 2020年第2期280-291,共12页
The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 k... The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 kerogens, and natural gas preservation conditions are poor due to active late tectonic movements. The formation conditions of large natural gas fields in the Bohai Bay Basin have been elusive. Based on the exploration results of Bohai Bay Basin and comparison with large gas fields in China and abroad, the formation conditions of conventional large-scale natural gas reservoirs in the Bohai Bay Basin were examined from accumulation dynamics, structure and sedimentation. The results show that the formation conditions of conventional large natural gas reservoirs in Bohai Bay Basin mainly include one core element and two key elements. The core factor is the strong sealing of Paleogene "quilt-like" overpressure mudstone. The two key factors include the rapid maturation and high-intensity gas generation of source rock in the late stage and large scale reservoir. On this basis, large-scale nature gas accumulation models in the Bohai Bay Basin have been worked out, including regional overpressure mudstone enriching model, local overpressure mudstone depleting model, sand-rich sedimentary subsag depleting model and late strongly-developed fault depleting model. It is found that Bozhong sag, northern Liaozhong sag and Banqiao sag have favorable conditions for the formation of large-scale natural gas reservoirs, and are worth exploring. The study results have important guidance for exploration of large scale natural gas reservoirs in the Bohai Bay Basin. 展开更多
关键词 Bohai Bay Basin oil type lacustrine basin large nature gas pool Bozhong 19-6 regional"quilt-like"overpressure mudstone rapid and high-intensity gas generation in late period large scale reservoir
下载PDF
Prospect and Exploratory Strategy on Oil & Gas in Tibet
3
作者 Zhang Kang (Bureau of Offshore Petroleum, Ministry ofGeology & Mineral Resources ) 《China Oil & Gas》 CAS 1995年第2期14-17,共4页
ProspectandExploratoryStrategyonOil&GasinTibet¥ZhangKang(BureauofOffshorePetroleum,MinistryofGeology&Mineral... ProspectandExploratoryStrategyonOil&GasinTibet¥ZhangKang(BureauofOffshorePetroleum,MinistryofGeology&MineralResources)Keyword... 展开更多
关键词 oil and gas exploration STRATEGY GEOLOGY Early TERTIARY period
下载PDF
Enrichment Mechanism and Prospects of Deep Oil and Gas 被引量:3
4
作者 HAO Fang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第3期742-756,共15页
With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep lay... With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep layers mean older strata,more complex structural evolution and more complex hydrocarbon accumulation processes,and even adjustment and transformation of oil and gas reservoirs.This paper systematically investigates the current status and research progress of deep oil and gas exploration around the world and looks forward to the future research focus of deep oil and gas.In the deep,especially the ultra-deep layers,carbonate reservoirs play a more important role than clastic rocks.Karst,fault-karst and dolomite reservoirs are the main types of deep and ultra-deep reservoirs.The common feature of most deep large and medium-sized oil and gas reservoirs is that they formed in the early with shallow depth.Fault activity and evolution of trap highs are the main ways to cause physical adjustment of oil and gas reservoirs.Crude oil cracking and thermochemical sulfate reduction(TSR)are the main chemical modification effects in the reservoir.Large-scale high-quality dolomite reservoirs is the main direction of deep oil and gas exploration.Accurate identification of oil and gas charging,adjustment and reformation processes is the key to understanding deep oil and gas distribution.High-precision detection technology and high-precision dating technology are an important guarantee for deep oil and gas research. 展开更多
关键词 deep oil and gas carbonate reservoir main accumulation period reservoir adjustment and reconstruction enrichment mechanism
下载PDF
Resource types, formation, distribution and prospects of coal-measure gas 被引量:6
5
作者 ZOU Caineng YANG Zhi +5 位作者 HUANG Shipeng MA Feng SUN Qinping LI Fuheng PAN Songqi TIAN Wenguang 《Petroleum Exploration and Development》 2019年第3期451-462,共12页
Coal-measure gas is the natural gas generated by coal, carbonaceous shale, and dark shale in coal-measure strata. It includes resources of continuous-type coalbed methane (CBM), shale gas and tight gas reservoirs, and... Coal-measure gas is the natural gas generated by coal, carbonaceous shale, and dark shale in coal-measure strata. It includes resources of continuous-type coalbed methane (CBM), shale gas and tight gas reservoirs, and trap-type coal-bearing gas reservoirs. Huge in resources, it is an important gas source in the natural gas industry. The formation and distribution characteristics of coal-measure gas in San Juan, Surat, West Siberia and Ordos basins are introduced in this paper. By reviewing the progress of exploration and development of coal-measure gas around the world, the coal-measure gas is confirmed as an important strategic option for gas supply. This understanding is mainly manifested in three aspects. First, globally, the Eurasian east-west coal-accumulation belt and North American north-south coal-accumulation belt are two major coal-accumulation areas in the world, and the Late Carboniferous–Permian, Jurassic and end of Late Cretaceous–Neogene are 3 main coal-accumulation periods. Second, continuous-type and trap-type are two main accumulation modes of coal-measure gas;it is proposed that the area with gas generation intensity of greater than 10×10^8 m^3/km^2 is essential for the formation of large coal-measure gas field, and the CBM generated by medium- to high-rank coal is usually enriched in syncline, while CBM generated by low-rank coal is likely to accumulate when the source rock and caprock are in good configuration. Third, it is predicted that coal-measure gas around the world has huge remaining resources, coal-measure gas outside source is concentrated in Central Asia-Russia, the United States, Canada and other countries/regions, while CBM inside source is largely concentrated in 12 countries. The production of coal-measure gas in China is expected to exceed 1000×10^8 m^3 by 2030, including (500–550)×10^8 m^3 conventional coal-measure gas,(400–450)×10^8 m^3 coal-measure tight gas, and (150–200)×10^8 m^3 CBM. 展开更多
关键词 coal-measure gas (CMG) coalbed methane (CBM) tight gas continuous-type trap-type gas generation intensity resource potential coal-accumulation period coal-accumulation area
下载PDF
Petroleum Source-Rock Evaluation and Hydrocarbon Potential in Montney Formation Unconventional Reservoir, Northeastern British Columbia, Canada 被引量:1
6
作者 Edwin I. Egbobawaye 《Natural Resources》 2017年第11期716-756,共41页
Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and the... Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and thermal maturity (Tmax) in Fort St. John study area (T86N, R23W and T74N, R13W) and its environs in northeastern British Columbia, Western Canada Sedimentary Basin (WCSB). TOC richness in Montney Formation within the study area is grouped into three categories: low TOC ( 3.5 wt%), and high TOC (>3.5 wt% %). Thermal maturity of the Montney Formation source-rock indicates that >90% of the analyzed samples are thermally mature, and mainly within gas generating window (wet gas, condensate gas, and dry gas), and comprises mixed Type II/III (oil/gas prone kerogen), and Type IV kerogen (gas prone). Analyses of Rock-Eval parameters (TOC, S2, Tmax, HI, OI and PI) obtained from 81 samples in 11 wells that penetrated the Montney Formation in the subsurface of northeastern British Columbia were used to map source rock quality across the study area. Based on total organic carbon (TOC) content mapping, geographical distribution of thermal maturity (Tmax) data mapping, including evaluation and interpretation of Rock-Eval parameters in the study area, the Montney Formation kerogen is indicative of a pervasively matured petroleum system in the study area. 展开更多
关键词 PETROLEUM Source-Rock Rock-Eval oil and gas Kerogen Vitrinite Reflectance HYDROCARBON RESERVOIR Montney ForMATION Geology TOC Tmax Pyrolysis HYDROCARBON generation British Columbia Western Canada Sedimentary Basin WCSB
下载PDF
An exploration breakthrough in Paleozoic petroleum system of Huanghua Depression in Dagang Oilfield and its significance, North China
7
作者 ZHAO Xianzheng PU Xiugang +5 位作者 JIANG Wenya ZHOU Lihong JIN Fengming XIAO Dunqing FU Lixin LI Hongjun 《Petroleum Exploration and Development》 2019年第4期651-663,共13页
In recent years, several wells in the Qibei and Wumaying buried hills of Dagang Oilfield tapped oil in the Carboniferous–Permian and Ordovician strata. This major breakthrough reveals that the deep Paleozoic in the B... In recent years, several wells in the Qibei and Wumaying buried hills of Dagang Oilfield tapped oil in the Carboniferous–Permian and Ordovician strata. This major breakthrough reveals that the deep Paleozoic in the Bohai Bay is a new petroleum system. Through re-evaluating the Paleozoic source rock, reservoir-cap combinations and traps, it is found the oil and gas mainly come from Carboniferous–Permian source rock. The study shows that the Paleozoic strata are well preserved in the central-south Huanghua Depression and developed two kinds of reservoirs, Upper Paleozoic clastic rock and Lower Paleozoic carbonate rock, which form favorable source-reservoir assemblages with Carboniferous–Permian coal measure source rock. The Carboniferous–Permian coal-bearing source rock is rich in organic matters, which are mainly composed of type Ⅱ2 and Ⅲ kerogens, and minor Ⅱ1 kerogen in partial areas. Multi-stage tectonic movements resulted in two stages of hydrocarbon generation of the source rocks. The period from the deposition of Kongdian Formation to now is the second stage of hydrocarbon generation. The matching between large-scale oil and gas charging, favorable reservoir-cap combinations and stable structure determines the enrichment of oil and gas. According to the new comprehensive evaluation of Paleozoic petroleum system, the primary oil and gas resources of the Paleozoic in the Bohai Bay Basin are over 1×1012m3. The exploration breakthrough in Paleozoic petroleum system, especially Carboniferous–Permian petroleum system in Huanghua Depression is inspirational for oil and gas exploration in similar provinces of Bohai Bay Basin. 展开更多
关键词 PALEOZOIC primary oil reservoirs secondary hydrocarbon generation oil and gas source Huanghua DEPRESSION Bohai Bay Basin
下载PDF
Mechanisms of abnormal overpressure generation in Kuqa foreland thrust belt and their impacts on oil and gas reservoir formation 被引量:3
8
作者 PI Xuejun XIE Huiwen +1 位作者 ZHANG Cun TIAN Zuoji 《Chinese Science Bulletin》 SCIE EI CAS 2002年第S1期85-93,共9页
Based on overview for mechanism of abnormaloverpressure generation in sedimentary basins, an insightdiscussion is made by the authors for the distribution, fea-tures and generation mechanisms of abnormal overpressurei... Based on overview for mechanism of abnormaloverpressure generation in sedimentary basins, an insightdiscussion is made by the authors for the distribution, fea-tures and generation mechanisms of abnormal overpressurein the Kuqa foreland thrust belt. The abnormal overpressurein the Kelasu structure zone west to the Kuqa forelandthrust belt was primarily distributed in Eogene to lowerCretaceous formations; structural compression and struc-tural emplacement as well as the containment of Eogenegyps-salt formation constituted the main mechanisms for thegeneration of abnormal overpressure. The abnormal over-pressure zone in the eastern Yiqikelike structure zone wasdistributed primarily in lower Jurassic Ahe Group, resultingfrom hydrocarbon generation as well as structural stressother than from under-compaction. Various distributionsand generating mechanisms have different impacts upon theformation of oil and gas reservoirs. K-E reservoir in the Ke-lasu zone is an allochthonous abnormal overpressure system.One of the conditions for reservoir accumulation is the mi-gration of hydrocarbon (T-J hydrocarbon source rock) alongthe fault up to K-E reservoir and accumulated into reservoir.And this migration process was controlled by the abnormaloverpressure system in K-E reservoir. The confined abnor-mal overpressure system in the Yiqikelike structure zoneconstituted the main cause for the poor developing of dis-solved porosity in T-J reservoir, resulting in poor physicalproperty of reservoir. The poor physical property of T-J res-ervoir of Yinan 2 structure was the main cause for the ab-sence of oil accumulation, but the presence of natural gasreservoir in the structure. 展开更多
关键词 ABNorMAL OVERPRESSURE structural EMPLACEMENT hydrocarbon generation formation of oil and gas reservoir KUQA ForELAND thrust belt.
原文传递
Petroleum Exploration of Craton Basins in China 被引量:6
9
作者 ZHANG Kang WANG Junling 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第1期117-126,共10页
Craton basins are a significant petroliferous provenance. Having undergone multiple open- dose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken.... Craton basins are a significant petroliferous provenance. Having undergone multiple open- dose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken. This has resulted in multi-source and multiphase hydrocarbon generation and later hydrocarbon accumulation so that a complicated spatial assemblage of primary, paraprimary and secondary oil-gas pools has been formed. The primary factors controlling hydrocarbon accumulation include hydrocarbon-generating depressions, paleouplifts, paleoslopes, unconformity surfaces, paleo-karst, faults and fissure systems as well as the later conservation conditions. In consequence, the strategy of exploration for China's craton basins is to identify the effective source rocks, pay attention to the different effects of paleohighs and late reworking, enhance studies of the secondary storage space, attach importance to the exploration of lithologic oil-gas reservoirs and natural gas pools, and approach consciously from the secondary oil pools to the targets near the source rocks. At the same time, a complete system of technologies and techniques must be built up. 展开更多
关键词 craton basin oil and gas exploration multiphase hydrocarbon generation multiphase accumulation reworking of oil-gas pools marine oil and gas
下载PDF
Determination of oil source rock palaeotemperature ascertains the direction of oil-gas exploration in Huahai-Jinta Basin
10
作者 任战利 张小会 +1 位作者 刘池洋 吴汉宁 《Chinese Science Bulletin》 SCIE EI CAS 1995年第24期2052-2056,共5页
Having a good oil-generation condition, the Lower Cretaceous Xinminbao Group is the main oil-generation bed in the Huahai Depression. Although the Huahai-Jinta Basin has an exploration history of about 21 years, and h... Having a good oil-generation condition, the Lower Cretaceous Xinminbao Group is the main oil-generation bed in the Huahai Depression. Although the Huahai-Jinta Basin has an exploration history of about 21 years, and has numerous oil indications, little advance has been made on oil exploration. Based on a synthetical study of geological data, and by using many methods such as apatite fission track, fluid inclusion, vitrinite reflectance 展开更多
关键词 Huahai-Jinta BASIN palaeotemperature oil generation period oil-gas EXPLorATION direction.
原文传递
The generation and its sealing condition of natural gas in the Tadong area
11
作者 HU GuoYi1,2,3,LI Jin3,CUI HuiYing3,RAN QiGui3,ZHANG Li3,WANG XiaoBo3 & WANG YiFeng3 1 Research Institute of Petroleum Exploration and Development,PetroChina,Beijing,100083,China 2 College of Resources and Environment,China University of Petroleum,Beijing 102249,China 3 Research Institute of Petroleum Exploration and Development-Langfang Branch,PetroChina,Langfang 065007,China 《Science China Earth Sciences》 SCIE EI CAS 2009年第S1期96-105,共10页
Focusing on the two natural gas exploration geological problems with abundant source of oil cracking gas in the late stage and the sealing condition of the oil cracking gas reservoir,the kinetics of oil cracking gas a... Focusing on the two natural gas exploration geological problems with abundant source of oil cracking gas in the late stage and the sealing condition of the oil cracking gas reservoir,the kinetics of oil cracking gas and the evaluation parameters of gas cap rock are adopted to the study on the natural gas accumulation conditions in the Tadong area. Both the study on the kinetics of oil cracking gas and the statistical results of reservoir bitumen reveal that the geological formation of oil cracking gas in the Tadong area is located in the top of Cambrian. Two kinds of oil cracking gas geological models at least,namely well Mandong-1's early rapid generation model(Middle Ordovician-end Silurian) and peak cracking model(with the natural gas conversion rate >90%) ,namely well Yingnan-2's two-stage generation model of oil cracking gas,have been set up. The oil cracking gas of Yingnan-2 in the late stage is very significant in the evaluation of natural gas exploration in the Tadong area. The evaluation results of the cap rock show that the microscopic parameters of cap rock from the lower assemblage of Cambrian-Ordovician are better than those from the upper assemblage. The former has strong capillary sealing ability and higher cap rock breakthrough pressure than the upper assemblage,with strong sealing ability,so that natural gas dissipates mainly by diffusion. According to the above investigations,the lower assemblage Cambrian-Ordovician natural gas of Kongquehe slope,Tadong low uplift and Yingjisu depression in the Tadong area prospects well. 展开更多
关键词 Tadong area oil CRACKING gas gas generation GEOLOGICAL model SEALING CONDITION evaluation
原文传递
Reservoir forming conditions and key exploration technologies of Lingshui 17-2 giant gas field in deepwater area of Qiongdongnan Basin 被引量:5
12
作者 Yuhong Xie Gongcheng Zhang +3 位作者 Zhipeng Sun Qingbo Zeng Zhao Zhao Shuai Guo 《Petroleum Research》 2019年第1期1-18,共18页
On September 15,2014,China National Offshore Oil Co.,Ltd announced that a high production of oil and gas flow of 1.6106 m3/d was obtained in Well LS17-2-1 in deepwater area in northern South China Sea,which is the fi... On September 15,2014,China National Offshore Oil Co.,Ltd announced that a high production of oil and gas flow of 1.6106 m3/d was obtained in Well LS17-2-1 in deepwater area in northern South China Sea,which is the first great oil and gas discovery for self-run deepwater exploration in China sea areas,and a strategic breakthrough was made in natural gas exploration in deepwater area of Lingshui sag in Qiongdongnan Basin.Under the combined action of climax of international deepwater exploration,high oil prices,national demands of China,practical needs of exploration,breakthroughs in seismic exploration and testing technologies,innovations in geological cognition and breakthroughs in deepwater operation equipment,Lingshui 17-2 gas field is discovered.Among these factors,the innovation in reservoir forming geological cognition directly promotes the discovery.The quality of seismic data in the early time is poor,so key reservoir forming conditions such as effective source rocks,high quality reservoirs and oil-gas migration pathways are unable to be ascertained;with support of new seismic acquisition and processing technology,some researches show that Lingshui sag is a successive large and deep sag with an area of 5000 km2 and the maximum thickness of Cenozoic stratum of 13 km.In the Early Oligocene,the Lingshui sag was a semi-closed delta-estuarine environment,where the coalmeasure and marine mudstones in Lower Oligocene Yacheng Formation were developed.The Lingshui sag is a sag with high temperature,and the bottom temperature of source rocks in Yacheng Formation can exceed 250C,but the simulation experiment of hydrocarbon generation at high temperature indicates that the main part of this set of source rock is still in the gas-generation window,with resources of nearly 1 trillion cubic meters,so the Lingshui sag is a hydrocarbon-rich generation sag.In the Neogene,the axial canyon channel from the Thu Bon River in Vietnam passed through the Lingshui sag,and five stages of secondary channels were developed in the axial canyon channel,where four types of reservoirs with excellent physical properties including the axial sand,lateral accretion sand,natural levee sand as well as erosion residual sand were developed,and lithologic traps or structural-lithologic traps were formed.The diapiric zone in the southern Lingshui sag connects deep source rocks in Yacheng Formation and shallow sandstones in the channels,and the migration pattern of natural gas is a T-type migration pattern,in other words,the natural gas generated from Yacheng Formation migrates vertically to the interior of the channel sandbody,and then migrates laterally in the channel reservoirs and forms the reservoirs.Innovations of geophysical exploration technologies for complicated geological conditions of deepwater areas are made,such as the detuning comprehensive quantitative amplitude hydrocarbon detection technology,which greatly improves the success rate of deepwater exploration;key technologies of deepwater safety exploratory well testing represented by the platform-dragged riser displacement technology are developed,which greatly reduces the drilling test cost.The above key exploration technologies provide a strong guarantee for the efficient exploration and development of Lingshui gas field. 展开更多
关键词 Deepwater oil and gas Source rocks Lower limit of gas generation the central canyon Diapiric zone Migration pathway Lingshui sag Lingshui 17-2 giant gas field Qiongdongnan basin
原文传递
Hydrocarbon accumulation conditions and key exploration and development technologies for PL 19-3 oilfield 被引量:3
13
作者 Yong'an Xue Yunhua Deng +3 位作者 Deying Wang Haifeng Yang Dingyou Lv Kai Kang 《Petroleum Research》 2019年第1期29-51,共23页
The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have... The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have provided abundant data for analyzing formation conditions of this super-large oilfield.On the basis of the exploration and development history,fundamental reservoir features,and with available geological,geophysical and test data,the hydrocarbon accumulation conditions and key exploration&development technologies of the PL 19e3 Oilfield were discussed.The key conditions for forming the super-large Neogene oilfield include four aspects.Firstly,the oilfield is located at the high position of the uplift that contacts the brachy-axis of the multi-ridge slope in the biggest hydrocarbon-rich sag in the Bohai Bay Basin,thus it has sufficient hydrocarbon source and extremely superior hydrocarbon migration condition.Secondly,the large-scale torsional anticlines which formed in the Neogene under the control of the Tanlu strike-slipping movement provide sufficient storage spaces for oil and gas preservation.Thirdly,the“multiple sets of composite reservoir-caprock assemblages”developing in the special shallow-water delta further contributes greatly to the effective storage space for oil and gas preservation.Fourthly,due to the coupling of the uplift and strike slip in the neotectonic period,extensive faulting activities constantly released the pressure while the late period massive hydrocarbon expulsion of the Bozhong took place at the same time,which assures the constant and intense charging of oil and gas.The super-large PL 19e3 Oilfield was controlled by the coupling effects of all those special geologic factors.In view of this oilfield's features(e.g.violently reformation caused by strike slip,and the special sedimentary environment of shallow-water delta),some key practical technologies for exploration and development have been developed.Such technologies include:the special prestack depth migration processing for gas cloud zones,the prediction of thin interbed reservoirs based on high-precision inversion of geologic model,the reservoir description for the shallow-water braided river delta,the quantitative description for remaining oil in the commingled oil reservoirs with wide well spacing and long well interval,and the well pattern adjustment for formations during high water cut period in the complex fluvial-facies oilfields. 展开更多
关键词 PL 19e3 Hydrocarbon accumulation conditions Multiple composite reservoir-caprock assemblages Constant and intense charging of oil and gas during later period gas cloud zone Exploration and development technology
原文传递
Mesh model building and migration and accumulation simulation of 3D hydrocarbon carrier system
14
作者 GUO Qiulin LIU Jifeng +6 位作者 CHEN Ningsheng WU Xiaozhi REN Hongjia WEI Yanzhao CHEN Gang GONG Deyu YUAN Xuanjun 《Petroleum Exploration and Development》 2018年第6期1009-1022,共14页
Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling ... Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling technology can not establish the interrelation of carriers in three dimensional space, we have proposed a hybrid-dimensional mesh modeling technology consisting of body(stratum), surfaces(faults and unconformities), lines and points, which provides an important research method for the description of geometry of sand bodies, faults and unconformities, the 3 D geological modeling of complex tectonic areas, and the simulation of hydrocarbon migration and accumulation. Furthermore, we have advanced a 3 D hydrocarbon migration pathway tracking method based on the hybrid-dimensional mesh of the carrier system. The application of this technology in western Luliang Uplift of Junggar Basin shows that the technology can effectively characterize the transport effect of fault planes, unconformities and sand bodies, indicate the hydrocarbon migration pathways, simulate the process of oil accumulation, reservoir adjustment and secondary reservoir formation, predict the hydrocarbon distribution. It is found through the simulation that the areas around the paleo-oil reservoir and covered by migration pathways are favorable sites for oil and gas distribution. 展开更多
关键词 oil and gas MIGRATION and accumulation CARRIER SYSTEM hybrid-dimensional MESH MIGRATION pathway geological modeling MESH generation JUNGGAR Basin western Luliang UPLIFT
下载PDF
Hydrocarbon migration in fracture-cave systems of carbonate reservoirs under tectonic stresses:A modeling study 被引量:3
15
作者 Chenjun Huang Geyun Liu +4 位作者 Yongsheng Ma Xingui Zhou Linyan Zhang Jinyin Yin Jinrui Guo 《Petroleum Research》 2019年第4期354-364,共11页
The Tahe oilfield,located in the southwest of the Akekule nosing structure,northern Tarim basin,was the most prolific oilfield targeting at the Ordovician carbonate reservoirs in China.The reservoir space was dominant... The Tahe oilfield,located in the southwest of the Akekule nosing structure,northern Tarim basin,was the most prolific oilfield targeting at the Ordovician carbonate reservoirs in China.The reservoir space was dominant with fracture-cave systems commonly induced by tectonics and karstification.Although hydrocarbon production had proceeded for two decades in the Tahe oilfiled,the control of oil and gas accumulations was still doubtful.In this work,the periodic fluid flow induced by cyclic tectonic stresses was proposed as the mechanism of hydrocarbon migration in the fracture-cave systems of carbonate reservoirs.The fracture networks formed conduits for fluid flow,and the fluid pressure in caves transmitted from stress field provided the driving force.The constitutive equations were established among stresses,fracture densities and flow velocities.Four quasi-3D geological models were constructed to simulate the flow velocities on the Ordovician surface of Akekule nosing structure in the critical tectonic stages.The simulated results supplied indicative information on oil and gas migration and accumulation in the tectonic stages.Combining with the oil and gas charge history,a conceptual model was built to reveal the multi-stage oil and gas charge and accumulation in the Ordovician of Akekule nosing structure. 展开更多
关键词 Fracture-cave system periodic fluid flow Numerical modeling oil and gas accumulation Akekule nosing structure Tarim Basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部