This paper investigates the optimal recovery of Sobolev spaces W_(1)^(r)[-1,1],r∈N in the space L_(1)[-1,1].They obtain the values of the sampling numbers of W_(1)^(r)[-1,1]in L_(1)[-1,1]and show that the Lagrange in...This paper investigates the optimal recovery of Sobolev spaces W_(1)^(r)[-1,1],r∈N in the space L_(1)[-1,1].They obtain the values of the sampling numbers of W_(1)^(r)[-1,1]in L_(1)[-1,1]and show that the Lagrange interpolation algorithms based on the extreme points of Chebyshev polynomials are optimal algorithms.Meanwhile,they prove that the extreme points of Chebyshev polynomials are optimal Lagrange interpolation nodes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11871006,11671271)。
文摘This paper investigates the optimal recovery of Sobolev spaces W_(1)^(r)[-1,1],r∈N in the space L_(1)[-1,1].They obtain the values of the sampling numbers of W_(1)^(r)[-1,1]in L_(1)[-1,1]and show that the Lagrange interpolation algorithms based on the extreme points of Chebyshev polynomials are optimal algorithms.Meanwhile,they prove that the extreme points of Chebyshev polynomials are optimal Lagrange interpolation nodes.