期刊文献+
共找到340,429篇文章
< 1 2 250 >
每页显示 20 50 100
Optimal decision-making method for equipment maintenance to enhance the resilience of power digital twin system under extreme disaster
1
作者 Song Gao Wei Wang +2 位作者 Jingyi Chen Xinyu Wu Junyan Shao 《Global Energy Interconnection》 EI CSCD 2024年第3期336-346,共11页
Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine ... Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms. 展开更多
关键词 Phasor measurement units Through-sequence optimization Resilience enhancement Communication networks Digital twins
下载PDF
A Synergistic Multi-Attribute Decision-Making Method for Educational Institutions Evaluation Using Similarity Measures of Possibility Pythagorean Fuzzy Hypersoft Sets
2
作者 Khuram Ali Khan Saba Mubeen Ishfaq +1 位作者 Atiqe Ur Rahman Salwa El-Morsy 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期501-530,共30页
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP... Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison. 展开更多
关键词 Hypersoft set Pythagorean fuzzy hypersoft set computational complexity multi-attribute decision-making optimization similarity measures uncertainty
下载PDF
Medical Diagnosis Based on Multi-Attribute Group Decision-Making Using Extension Fuzzy Sets,Aggregation Operators and Basic Uncertainty Information Granule
3
作者 Anastasios Dounis 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期759-811,共53页
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to... Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data. 展开更多
关键词 Medical diagnosis multi-attribute group decision-making(MAGDM) q-ROFS IVq-ROFS BUI aggregation operators similarity measures inverse score function
下载PDF
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
4
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS CLASSIFICATION AlexNet50 transfer learning hyperparameter tuning optimIZER
下载PDF
Healthcare providers’perspectives on factors influencing their critical care decision-making during the COVID-19 pandemic:An international pilot survey
5
作者 Sonali Vadi Neha Sanwalka Pramod Thaker 《World Journal of Critical Care Medicine》 2025年第1期100-110,共11页
BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpfu... BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using theχ2 test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being. 展开更多
关键词 SURVEY Clinical decision-making COVID-19 pandemic
下载PDF
Voices that matter:The impact of patient-reported outcome measures on clinical decision-making
6
作者 Naveen Jeyaraman Madhan Jeyaraman +2 位作者 Swaminathan Ramasubramanian Sangeetha Balaji Sathish Muthu 《World Journal of Methodology》 2025年第2期54-61,共8页
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati... The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings. 展开更多
关键词 Patient-reported outcome measures Clinical decision-making Patient-centered care Healthcare technology Data management Policy development
下载PDF
Application of Fussy Decision-making in Selecting the Optimal Variety from City Flower Candidates
7
作者 刘晓玲 《Journal of Landscape Research》 2009年第9期96-98,共3页
Fuzzy similar priority ratio is adopted to select the optimal variety from 6 city flower candidates in a certain city,i.e.Nelumbo nucifera x1,Prunus persica Batsch.var.duplex Rehd.x2,Rosa chinensis Jacq.x3,Dendranthem... Fuzzy similar priority ratio is adopted to select the optimal variety from 6 city flower candidates in a certain city,i.e.Nelumbo nucifera x1,Prunus persica Batsch.var.duplex Rehd.x2,Rosa chinensis Jacq.x3,Dendranthema morifolium x4,Jassminum nudiflorum Lindl.x5 and Prunus mume x6.The results show that the priority sequence of 6 candidates was x1,x6,x5,x3,x4 and x2. 展开更多
关键词 City FLOWER Similar PRIORITY matrix optimal OBJECT
下载PDF
Optimal Selection of Hybrid Renewable Energy System Using Multi-Criteria Decision-Making Algorithms 被引量:1
8
作者 Hegazy Rezk Irik Z.Mukhametzyanov +1 位作者 Mujahed Al-Dhaifallah Hamdy A.Ziedan 《Computers, Materials & Continua》 SCIE EI 2021年第8期2001-2027,共27页
Several models of multi-criteria decision-making(MCDM)have identified the optimal alternative electrical energy sources to supply certain load in an isolated region in Al-Minya City,Egypt.The load demand consists of w... Several models of multi-criteria decision-making(MCDM)have identified the optimal alternative electrical energy sources to supply certain load in an isolated region in Al-Minya City,Egypt.The load demand consists of water pumping system with a water desalination unit.Various options containing three different power sources:only DG,PV-B system,and hybrid PV-DG-B,two different sizes of reverse osmosis(RO)units;RO-250 and RO-500,two strategies of energy management;load following(LF)and cycle charging(CC),and two sizes of DG;5 and 10 kW were taken into account.Eight attributes,including operating cost,renewable fraction,initial cost,the cost of energy,excess energy,unmet load,breakeven grid extension distance,and the amount of CO_(2),were used during the evaluation process.To estimate these parameters,HOMER®software was employed to perform both the simulation and optimization process.Four different weight estimation methods were considered;no priority of criteria,based on a pairwise comparisons matrix of the criteria,CRITIC-method,and entropy-based method.The main findings(output results)confirmed that the optimal option for the case study was hybrid PV-DG-B with the following specification:5 kW DG,RO-500,and load following control strategy.Under this condition,the annual operating cost and initial costs were$5546 and$161022,respectively,whereas the cost of energy was 0.077$/kWh.The excess energy and unmet loads were 40998 and 2371 kWh,respectively.The breakeven grid extension distance and the amount of CO_(2) were 3.31 km and 5171 kg per year,respectively.Compared with DG only,the amount of CO_(2) has been sharply reduced by 113939 kg per year. 展开更多
关键词 Al-Minya city(Egypt) energy efficiency multi-criteria decision-making optimIZATION renewable energy reverse osmosis units
下载PDF
Optimal Decision-Making of Trans-Provincial Electricity Market Subjects with Risks under Renewable Portfolio Standards
9
作者 HuiWang Yishu Chen +1 位作者 Zichao Wu Haocheng Xu 《Energy Engineering》 EI 2022年第3期1141-1167,共27页
The randomness and uncertainty of renewable energy generation are expected to significantly change the optimal decision-making of trans-provincial electricity market subjects.Therefore,it is beneficial to optimize the... The randomness and uncertainty of renewable energy generation are expected to significantly change the optimal decision-making of trans-provincial electricity market subjects.Therefore,it is beneficial to optimize the interests of each of these subjects,considering the unpredictable risks of renewable energy under the renewable portfolio standards(RPS)and researching their effects on the optimal decision-making of transprovincial electricity market multi-subjects.First,we develop a trans-provincial trading market mechanism for renewable energy and clarify the electricity supply and demand relation and the green certificates supply and demand relation of trans-provincial electricitymarketmulti-subjects.Then,under the RPS,we construct a multi-subject game model of the power supply chain that recognizes the risks,and adopt the reverse induction method to discuss the optimum risk-taking judgment of each subject in the trans-provincial electricity market.Finally,we useMATLAB to verify the viability and efficacy of the proposed gamemodel,and obtain a certain reference value for the optimal decision-making of trans-provincial electricity market subjects.In summary,we consider the uncertainty risks of renewable energy under RPS,study the effects of the green certificate price and risk aversion coefficient in the RPS mechanism on the optimal decisionmaking of trans-provincial electricity market subjects,and obtain the changing trends of two different power products and those of different electricity market subjects under the influence of the green certificate price and risk aversion coefficient,which have a certain reference value for studying the factors affecting the optimal decision-making of trans-provincial electricity market subjects. 展开更多
关键词 Renewable portfolio standards uncertainty risks CVaR method trans-provincial electricity market subjects optimal decision-making
下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
10
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
下载PDF
A practical framework for scenario-based optimal decision-making on water-deficient river ecological restoration in mining areas
11
作者 Sen YU Ming-Yu WANG 《Journal of Coal Science & Engineering(China)》 2013年第4期566-572,共7页
Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting... Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting from system complexity, multi-objectives, long term restoration in which multiple stages may be needed to take, and difficulty in detailed process quan- tification. By analyzing and fully reflecting the differences between the central zone and surrounding zones of the restored river passing through the mining area, the comprehensive evaluation index systems of the central zone and surrounding zones are separately suggested firstly. Then a scenario-based optimization decision-making model for river ecological restoration in min- ing areas was established with taking advantages of spatial divisions and following procedure of first going through optimiza- tion by sub-region level, then optimizing by integration. Then, a framework for scenario-based optimal decision-making on water-deficient river ecological restoration in mining areas is proposed in which a multi-objective and multi-stage spatial division optimization method is considered to improve decision-making efficiency and enhance its practicability. It is indicated that this optimization framework is reasonable and practical, which is expected to offer reliable decision support in identifying the effective solutions on optimal management of the water-deficient river ecological restoration in mining areas. At the same time, it has implications in general land reclamation and ecological restoration in the mining areas. 展开更多
关键词 river ecological restoration optimization model scenario analysis
下载PDF
基于D-optimal法优化香菇菌种培养基质配方的研究 被引量:1
12
作者 任爱民 包玉政 +7 位作者 韩爱民 李通 刘明军 王晓巍 杨建杰 杨琴 杨仁录 付爱芳 《寒旱农业科学》 2024年第8期724-733,共10页
为了筛选和优化香菇原种及栽培种的培养基质配方,采用D-optimal设计方法,以麦粒和木屑不同配比为原料优化香菇原种培养基质,以木屑、玉米芯、麸皮不同配比为原料优化香菇栽培种培养基质,以香菇品种L808作为供试菌种,分别以其菌丝萌发期... 为了筛选和优化香菇原种及栽培种的培养基质配方,采用D-optimal设计方法,以麦粒和木屑不同配比为原料优化香菇原种培养基质,以木屑、玉米芯、麸皮不同配比为原料优化香菇栽培种培养基质,以香菇品种L808作为供试菌种,分别以其菌丝萌发期、菌丝长速、满袋期为评价指标,通过对各评价指标的测量,建立了各配比基质与香菇培养基质配方响应值之间的回归模型,从而科学的优化出香菇原种及栽培种栽培基质的配方。试验结果表明,香菇原种栽培基质最优配方为50%麦粒+50%木屑;香菇栽培种栽培基质最优配方为37.69%玉米芯+23.33%麸皮+38.98%木屑。在以上2个配方的栽培基质接种后,香菇菌丝的生长旺盛,萌发期短、满袋期短,且理化性质较优,说明优化得到的栽培基质配方具有较高的可行性,该设计方法也在优化培养料配比上是科学并且可行的。 展开更多
关键词 D-optimal 香菇 原种 栽培种 培养基质 配方
下载PDF
Evolutionary Decision-Making and Planning for Autonomous Driving Based on Safe and Rational Exploration and Exploitation 被引量:2
13
作者 Kang Yuan Yanjun Huang +4 位作者 Shuo Yang Zewei Zhou Yulei Wang Dongpu Cao Hong Chen 《Engineering》 SCIE EI CAS CSCD 2024年第2期108-120,共13页
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame... Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment. 展开更多
关键词 Autonomous driving decision-making Motion planning Deep reinforcement learning Model predictive control
下载PDF
Distributed Optimal Formation Control for Unmanned Surface Vessels by a Regularized Game-Based Approach 被引量:1
14
作者 Jun Shi Maojiao Ye 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期276-278,共3页
Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a... Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a noncooperative game.Under this game theoretic framework,the optimal formation is achieved by seeking the Nash equilibrium of the regularized game.A modular structure consisting of a distributed Nash equilibrium seeker and a regulator is proposed. 展开更多
关键词 REGULAR SEEKING optimal
下载PDF
Multi-target Collaborative Combat Decision-Making by Improved Particle Swarm Optimizer 被引量:5
15
作者 Ding Yongfei Yang Liuqing +2 位作者 Hou Jianyong Jin Guting Zhen Ziyang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期181-187,共7页
A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe... A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat. 展开更多
关键词 collaborative combat multi-target decision-making improved particle swarm optimization(IPSO)
下载PDF
Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure 被引量:1
16
作者 Xiaodong Zhang Lu Jin Jinsheng Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期238-249,共12页
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol... In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance. 展开更多
关键词 SUPERSTRUCTURE Process synthesis Heat integration Simulation-based optimization Industrial organosilicon separation
下载PDF
Mixture-optimal法优化红枣姜茶饮料配方工艺
17
作者 叶胜明 《食品安全导刊》 2024年第8期123-126,共4页
目的:优化红枣姜茶饮料的配方,为凉茶饮料的品质提升提供理论依据和技术指导。方法:使用Mixture–optimal对红枣姜茶饮料配方工艺进行优化,通过方差分析、显著性检验等方法验证模型的合理性,得到回归方程,推测出红枣姜茶的最优配方。结... 目的:优化红枣姜茶饮料的配方,为凉茶饮料的品质提升提供理论依据和技术指导。方法:使用Mixture–optimal对红枣姜茶饮料配方工艺进行优化,通过方差分析、显著性检验等方法验证模型的合理性,得到回归方程,推测出红枣姜茶的最优配方。结果:最优配方为干姜6 g、红枣40 g、肉豆蔻4 g、肉桂3.557 4 g、山药28.442 5 g、百合24 g和红糖30 g。结论:减少干姜和肉豆蔻的添加量,增加红枣、百合和红糖的添加量,会使红枣姜茶的口感更好。 展开更多
关键词 大枣 干姜 红枣姜茶 配方优化 口感
下载PDF
Toward Trustworthy Decision-Making for Autonomous Vehicles:A Robust Reinforcement Learning Approach with Safety Guarantees
18
作者 Xiangkun He Wenhui Huang Chen Lv 《Engineering》 SCIE EI CAS CSCD 2024年第2期77-89,共13页
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present... While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies. 展开更多
关键词 Autonomous vehicle decision-making Reinforcement learning Adversarial attack Safety guarantee
下载PDF
Enhancing Renewable Energy Integration:A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks
19
作者 Ali S.Alghamdi Mohamed A.Zohdy Saad Aldoihi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1339-1370,共32页
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n... In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids. 展开更多
关键词 Renewable energy integration optimal power flow stochastic renewable energy sources gaussian-bare-bones levy cheetah optimizer electrical network optimization carbon tax optimization
下载PDF
AN OPTIMAL CONTROL PROBLEM FOR A LOTKA-VOLTERRA COMPETITION MODEL WITH CHEMO-REPULSION
20
作者 Diana I.HERNÁNDEZ Diego A.RUEDA-GOMEZ Élder J.VILLAMIZAR-ROA 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期721-751,共31页
In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in... In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism.We prove the existence and uniqueness of weak-strong solutions,and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem,where the control is acting on the chemical signal.Posteriorly,we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory.Finally,we propose a discrete approximation scheme of the optimality system based on the gradient method,which is validated with some computational experiments. 展开更多
关键词 LOTKA-VOLTERRA chemo-repulsion optimal control optimality conditions
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部