The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim...The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.展开更多
With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The...With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p...With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.展开更多
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute...The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.展开更多
In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distribut...In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.展开更多
The rapid development of electric buses has brought a surge in the number of bus hubs and their charging and discharging capacities.Therefore,the location and construction scale of bus hubs will greatly affect the ope...The rapid development of electric buses has brought a surge in the number of bus hubs and their charging and discharging capacities.Therefore,the location and construction scale of bus hubs will greatly affect the operation costs and benefits of an urban distribution network in the future.Through the scientific and reasonable planning of public transport hubs on the premise of meeting the needs of basic public transport services,it can reduce the negative impact of electric bus charging loads upon the power grids.Furthermore,it can use its flexible operation characteristics to provide flexible support for the distribution network.In this paper,taking the impact of public transport hub on the reliability of distribution network as the starting point,a three-level programming optimization model based on the value and economy of distribution network load loss is proposed.Through the upper model,several planning schemes can be generated,which provides boundary conditions for the expansion of middle-level optimization.The normal operation dispatching scheme of public transport hub obtained from the middle-level optimization results provides boundary conditions for the development of lower level optimization.Through the lower level optimization,the expected load loss of the whole distribution system including bus hub under the planning scheme given by the upper level can be obtained.The effectiveness of the model is verified by an IEEE-33 bus example.展开更多
Simulated annealing(SA) algorithm is a heuristic algorithm,proposed one approximation algorithm of solving optimization combinatorial problems inspired by objects in the annealing process of heating crunch. The algori...Simulated annealing(SA) algorithm is a heuristic algorithm,proposed one approximation algorithm of solving optimization combinatorial problems inspired by objects in the annealing process of heating crunch. The algorithm is superior to the traditional greedy algorithm,which avoids falling into local optimum and reaches global optimum. There are often some problems to find the shortest path,etc in the logistics and distribution network, and we need optimization for logistics and distribution path in order to achieve the shortest,best,most economical,and so on. The paper uses an example of SA algorithm validation to verify it,and the method is proved to be feasible.展开更多
In recent years, with the rapid development of China's fresh market, cold chain logistics ushered in a new development opportunity. Because of the late start and slow development of cold chain logistics in China, ...In recent years, with the rapid development of China's fresh market, cold chain logistics ushered in a new development opportunity. Because of the late start and slow development of cold chain logistics in China, it is difficult to achieve cross-regional and offseason sales activities, resulting in a situation of high output and small sales volume, which is also an important reason for the high price and poor quality of fresh agricultural products. With the passage of time, the characteristics of cold chain distribution of agricultural products have become an important direction for the future development of logistics industry. In this paper, aiming at the characteristics of agricultural cold chain distribution, the carbon emissions in the process of distribution were quantified as costs and added to the total cost, and an optimization model of agricultural cold chain logistics path with time window considering the minimum total cost as the objective function was constructed. The improved genetic algorithm was used to solve the problem. The simulation results show that the improved genetic algorithm is an effective method to solve the optimization problem of agricultural cold-chain logistics path considering carbon emissions, and has guiding significance for the selection of low-carbon and environmentally friendly distribution routes for agricultural cold-chain logistics distribution enterprises.展开更多
The purpose of this research is to assist the Central African's logistics network authorities in making,evaluating,and realizing their decisions in regard to the development and management of e-commerce logistics ...The purpose of this research is to assist the Central African's logistics network authorities in making,evaluating,and realizing their decisions in regard to the development and management of e-commerce logistics network of companies・This article evaluated and used mathematical models which provided a descriptive analysis on the current situation of its'logistics network while applying the e-commerce logistics network optimization method in dealing with common issues of the logistics network in Central Africa,especially Chad.The suggested network in this study would promote the^from plant-to-from DC"ratio of 83%to 17%which conforms to the companies*objective in progressing towards direct plant shipments.In regard to that,it was proved that direct plant shipments could reduce the distribution costs from 12%to 3%of the net sales(approximately$135,000 in monthly savings).展开更多
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s...A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.展开更多
A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using...A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using the time series trigonometric function analysis method;the service discharge based macroscopic model of network performance is established using the network structuring method;a relatively satisfactory mathematical model for the optimal control of water distribution network is put forward in view of security and economy,and solved by the constrained mixed discrete variable complex arithmetic.The model is applied in many examples and the results are satisfactory.展开更多
Landslide susceptibility maps(LSMs) play a vital role in assisting land use planning and risk mitigation. This study aims to optimize causative factors using logistic regression(LR) and an artificial neural network(AN...Landslide susceptibility maps(LSMs) play a vital role in assisting land use planning and risk mitigation. This study aims to optimize causative factors using logistic regression(LR) and an artificial neural network(ANN) to produce a LSM. The LSM is produced with 11 causative factors and then optimized using forward-stepwise LR(FSLR), ANN, and their combination(FSLR-ANN) until eight causative factors were found for each method. The ANN method produced superior validation results compared with LR. The ROC values for the training data set ranges between 0.8 and 0.9. On the other hand, validation with the percentage of landslide fall into LSM class high and very high, ANN method was higher(92.59%) than LR(82.12%). FSLR-ANN with nine causative factors gave the best validation results with respect to area under curve(AUC) values, and validation with the percentage of landslide fall into LSM class high and very high. In conclusion, ANN was found to be better than LR when producing LSMs. The best Optimization was combination of FSLR-ANN with nine causative factors and AUC success rate 0.847, predictive rate 0.844 and validation with landslide fall into high and very high class with 91.30%. It is an encouraging preliminary model towards a systematic introduction of FSLR-ANN model for optimization causative factors in landslide susceptibility assessment in the mountainous area of Ujung Loe Watershed.展开更多
In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol ...In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabasi-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabasi-Albert method commonly used in current network research.展开更多
Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision usi...Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision using a limited number of stations.In this work,a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed,named the minimum Orbit and ERP Dilution of Precision Factor(OEDOP)criterion.To quickly identify the specific station locations for the optimal station distribution on a map,a method for the rapid determination of the selected station locations is developed,which is based on the map grid zooming and heuristic technique.Using the minimum OEDOP criterion and the proposed method for the rapid determination of optimal station locations,an optimal or near-optimal station distribution scheme for 17 newly built BeiDou Navigation Satellite System(BDS)global tracking stations is suggested.To verify the proposed criterion and method,real GNSS data are processed.The results show that the minimum OEDOP criterion is valid,as the smaller the value of OEDOP,the better the precision of the satellite orbit and ERP determination.Relative to the exhaustive method,the proposed method significantly improves the computational efficiency of the optimal station location determination.In the case of 3 newly built stations,the computational efficiency of the proposed method is 35 times greater than that of the exhaustive method.As the number of stations increases,the improvement in the computational efficiency becomes increasingly obvious.展开更多
The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic mod...The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.展开更多
Considering the secure authentication problem for equipment support information network,a clustering method based on the business information flow is proposed. Based on the proposed method,a cluster-based distributed ...Considering the secure authentication problem for equipment support information network,a clustering method based on the business information flow is proposed. Based on the proposed method,a cluster-based distributed authentication mechanism and an optimal design method for distributed certificate authority( CA)are designed. Compared with some conventional clustering methods for network,the proposed clustering method considers the business information flow of the network and the task of the network nodes,which can decrease the communication spending between the clusters and improve the network efficiency effectively. The identity authentication protocols between the nodes in the same cluster and in different clusters are designed. From the perspective of the security of network and the availability of distributed authentication service,the definition of the secure service success rate of distributed CA is given and it is taken as the aim of the optimal design for distributed CA. The efficiency of providing the distributed certificate service successfully by the distributed CA is taken as the constraint condition of the optimal design for distributed CA. The determination method for the optimal value of the threshold is investigated. The proposed method can provide references for the optimal design for distributed CA.展开更多
Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In th...Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In this approach,the network is decomposed into several subsystems,each of which is under the supervision of a corresponding computing agent(controller,optimizer).The agents coordinate their control and optimization decisions based on information communication among them.In recent years,algorithms and methods for distributed control and optimization are undergoing rapid development.In this paper,we provide a comprehensive,up-to-date review with perspectives and discussions on possible future directions.展开更多
Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is...Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.展开更多
基金the National Natural Science Foundation of China(52177074).
文摘The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.
文摘With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
基金This research is supported by the Science and Technology Program of Gansu Province(No.23JRRA880).
文摘With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.
文摘The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.
基金The authors gratefully acknowledge the support of the Enhancement Strategy of Multi-Type Energy Integration of Active Distribution Network(YNKJXM20220113).
文摘In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.
文摘The rapid development of electric buses has brought a surge in the number of bus hubs and their charging and discharging capacities.Therefore,the location and construction scale of bus hubs will greatly affect the operation costs and benefits of an urban distribution network in the future.Through the scientific and reasonable planning of public transport hubs on the premise of meeting the needs of basic public transport services,it can reduce the negative impact of electric bus charging loads upon the power grids.Furthermore,it can use its flexible operation characteristics to provide flexible support for the distribution network.In this paper,taking the impact of public transport hub on the reliability of distribution network as the starting point,a three-level programming optimization model based on the value and economy of distribution network load loss is proposed.Through the upper model,several planning schemes can be generated,which provides boundary conditions for the expansion of middle-level optimization.The normal operation dispatching scheme of public transport hub obtained from the middle-level optimization results provides boundary conditions for the development of lower level optimization.Through the lower level optimization,the expected load loss of the whole distribution system including bus hub under the planning scheme given by the upper level can be obtained.The effectiveness of the model is verified by an IEEE-33 bus example.
基金National Natural Science Foundation of China(No.50574037)Henan Soft Science Research Project(No.102400410033No.102400410032)
文摘Simulated annealing(SA) algorithm is a heuristic algorithm,proposed one approximation algorithm of solving optimization combinatorial problems inspired by objects in the annealing process of heating crunch. The algorithm is superior to the traditional greedy algorithm,which avoids falling into local optimum and reaches global optimum. There are often some problems to find the shortest path,etc in the logistics and distribution network, and we need optimization for logistics and distribution path in order to achieve the shortest,best,most economical,and so on. The paper uses an example of SA algorithm validation to verify it,and the method is proved to be feasible.
文摘In recent years, with the rapid development of China's fresh market, cold chain logistics ushered in a new development opportunity. Because of the late start and slow development of cold chain logistics in China, it is difficult to achieve cross-regional and offseason sales activities, resulting in a situation of high output and small sales volume, which is also an important reason for the high price and poor quality of fresh agricultural products. With the passage of time, the characteristics of cold chain distribution of agricultural products have become an important direction for the future development of logistics industry. In this paper, aiming at the characteristics of agricultural cold chain distribution, the carbon emissions in the process of distribution were quantified as costs and added to the total cost, and an optimization model of agricultural cold chain logistics path with time window considering the minimum total cost as the objective function was constructed. The improved genetic algorithm was used to solve the problem. The simulation results show that the improved genetic algorithm is an effective method to solve the optimization problem of agricultural cold-chain logistics path considering carbon emissions, and has guiding significance for the selection of low-carbon and environmentally friendly distribution routes for agricultural cold-chain logistics distribution enterprises.
文摘The purpose of this research is to assist the Central African's logistics network authorities in making,evaluating,and realizing their decisions in regard to the development and management of e-commerce logistics network of companies・This article evaluated and used mathematical models which provided a descriptive analysis on the current situation of its'logistics network while applying the e-commerce logistics network optimization method in dealing with common issues of the logistics network in Central Africa,especially Chad.The suggested network in this study would promote the^from plant-to-from DC"ratio of 83%to 17%which conforms to the companies*objective in progressing towards direct plant shipments.In regard to that,it was proved that direct plant shipments could reduce the distribution costs from 12%to 3%of the net sales(approximately$135,000 in monthly savings).
文摘A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.
基金Foundation for University Key Teacher by the Min-istry of Education
文摘A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using the time series trigonometric function analysis method;the service discharge based macroscopic model of network performance is established using the network structuring method;a relatively satisfactory mathematical model for the optimal control of water distribution network is put forward in view of security and economy,and solved by the constrained mixed discrete variable complex arithmetic.The model is applied in many examples and the results are satisfactory.
文摘Landslide susceptibility maps(LSMs) play a vital role in assisting land use planning and risk mitigation. This study aims to optimize causative factors using logistic regression(LR) and an artificial neural network(ANN) to produce a LSM. The LSM is produced with 11 causative factors and then optimized using forward-stepwise LR(FSLR), ANN, and their combination(FSLR-ANN) until eight causative factors were found for each method. The ANN method produced superior validation results compared with LR. The ROC values for the training data set ranges between 0.8 and 0.9. On the other hand, validation with the percentage of landslide fall into LSM class high and very high, ANN method was higher(92.59%) than LR(82.12%). FSLR-ANN with nine causative factors gave the best validation results with respect to area under curve(AUC) values, and validation with the percentage of landslide fall into LSM class high and very high. In conclusion, ANN was found to be better than LR when producing LSMs. The best Optimization was combination of FSLR-ANN with nine causative factors and AUC success rate 0.847, predictive rate 0.844 and validation with landslide fall into high and very high class with 91.30%. It is an encouraging preliminary model towards a systematic introduction of FSLR-ANN model for optimization causative factors in landslide susceptibility assessment in the mountainous area of Ujung Loe Watershed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70871082)the Shanghai Leading Academic Discipline Project (Grant No. S30504)
文摘In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabasi-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabasi-Albert method commonly used in current network research.
基金This work was supported by“The National Natural Science Foundation of China(No.41404033)”“The National Science and Technology Basic Work of China(No.2015FY310200)”+1 种基金“The State Key Program of National Natural Science Foundation of China(No.41730109)”“The Jiangsu Dual Creative Teams Program Project Awarded in 2017”and thanks for the data from IGS and iGMAS。
文摘Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision using a limited number of stations.In this work,a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed,named the minimum Orbit and ERP Dilution of Precision Factor(OEDOP)criterion.To quickly identify the specific station locations for the optimal station distribution on a map,a method for the rapid determination of the selected station locations is developed,which is based on the map grid zooming and heuristic technique.Using the minimum OEDOP criterion and the proposed method for the rapid determination of optimal station locations,an optimal or near-optimal station distribution scheme for 17 newly built BeiDou Navigation Satellite System(BDS)global tracking stations is suggested.To verify the proposed criterion and method,real GNSS data are processed.The results show that the minimum OEDOP criterion is valid,as the smaller the value of OEDOP,the better the precision of the satellite orbit and ERP determination.Relative to the exhaustive method,the proposed method significantly improves the computational efficiency of the optimal station location determination.In the case of 3 newly built stations,the computational efficiency of the proposed method is 35 times greater than that of the exhaustive method.As the number of stations increases,the improvement in the computational efficiency becomes increasingly obvious.
基金Project(50278062) supported by the National Natural Science Foundation of ChinaProject(003611611)supported by the Natural Science Foundation of Tianjin, China
文摘The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.
基金National Natural Science Foundation of China(No.61271152)Natural Science Foundation of Hebei Province,China(No.F2012506008)the Original Innovation Foundation of Ordnance Engineering College,China(No.YSCX0903)
文摘Considering the secure authentication problem for equipment support information network,a clustering method based on the business information flow is proposed. Based on the proposed method,a cluster-based distributed authentication mechanism and an optimal design method for distributed certificate authority( CA)are designed. Compared with some conventional clustering methods for network,the proposed clustering method considers the business information flow of the network and the task of the network nodes,which can decrease the communication spending between the clusters and improve the network efficiency effectively. The identity authentication protocols between the nodes in the same cluster and in different clusters are designed. From the perspective of the security of network and the availability of distributed authentication service,the definition of the secure service success rate of distributed CA is given and it is taken as the aim of the optimal design for distributed CA. The efficiency of providing the distributed certificate service successfully by the distributed CA is taken as the constraint condition of the optimal design for distributed CA. The determination method for the optimal value of the threshold is investigated. The proposed method can provide references for the optimal design for distributed CA.
基金Supported by Division of Chemical,Bioengineering,Environmental and Transport Systems(CBET) of the National Science Foundation(NSF) of the United States of America
文摘Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In this approach,the network is decomposed into several subsystems,each of which is under the supervision of a corresponding computing agent(controller,optimizer).The agents coordinate their control and optimization decisions based on information communication among them.In recent years,algorithms and methods for distributed control and optimization are undergoing rapid development.In this paper,we provide a comprehensive,up-to-date review with perspectives and discussions on possible future directions.
文摘Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.