The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field th...The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field theory of fermions and bosons: Z o and W ± as well as all quark-antiquark states (here only the tt¯state is discussed) are described by bound states with scalar coupling between their massless constituents and have a structure similar to leptons. However, the scalar Higgs-boson H o corresponds to a state with vector coupling between the elementary constituents. Similar scalar states are expected also in the mass region of the mesons ω (0.782 GeV) - Υ ( 9.46 GeV). The underlying calculations can be run on line using the Web-address https://h2909473.stratoserver.net.展开更多
A chemical non-equilibrium equation for binding of massless quarks to antiquarks, combined with the spatial correlations occurring in the condensation process, yields a density dependent form of the double-well potent...A chemical non-equilibrium equation for binding of massless quarks to antiquarks, combined with the spatial correlations occurring in the condensation process, yields a density dependent form of the double-well potential in the electroweak theory. The Higgs boson acquires mass, valence quarks emerge and antiparticles become suppressed when the system relaxes and symmetry breaks down. The hitherto unknown dimensionless coupling parameter to the superconductor-like potential becomes a re-gulator of the quark-antiquark asymmetry. Only a small amount of quarks become “visible”—the valence quarks, which are 13% of the total sum of all quarks and antiquarks—suggesting that the quarks-antiquark pair components of the becoming quark-antiquark sea play the role of dark matter. When quark-masses are in-weighted, this number approaches the observed ratio between ordinary matter and the sum of ordinary and dark matter. The model also provides a chemical non-equilibrium explanation for the information loss in black holes, such as of baryon number.展开更多
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the g...Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We lind that if the current mass of strange quark m, is smmall, the strange quark matter remains stable unless the baryon density is very high. If m, is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.展开更多
The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the authors’ name: Alireza Heidari...The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the authors’ name: Alireza Heidari and Seyedali Vedad. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.5 412-419, 2012, has been removed from this site.展开更多
In this paper, a manifestation of the well-known color confinement from the QCD (quantum chromodynamics) in the newly developed YY model for the atomic nucleus is presented. There is a wonderful correspondence between...In this paper, a manifestation of the well-known color confinement from the QCD (quantum chromodynamics) in the newly developed YY model for the atomic nucleus is presented. There is a wonderful correspondence between the structural requirements from the YY model and some elementary properties of the color dynamics from QCD. The open questions in the YY model, namely the holding forces for triple nodes and for pairing space links, are exactly covered by the three-color compensation or by the paired color anti-color balance. We will see what colors and anti-colors do mean in the YY model, how up quarks and down quarks get assigned a color or anti-color. We will discover some relationships between gluon-based interactions as described in the standard model and pairing space links in the YY model.展开更多
We adopt the quark pair creation model to investigate the light meson emissions of several charmoniumlike states.The quark pair creation model is applied to four-body systems,and we calculate the pion/kaon emissions o...We adopt the quark pair creation model to investigate the light meson emissions of several charmoniumlike states.The quark pair creation model is applied to four-body systems,and we calculate the pion/kaon emissions of X(4700),Z_(c)(4430),Y(4230),Y(4360),Y(4390),and Y(4660)within compact tetraquark configurations.We find that the pion/kaon decay widths of X(4700)and Z_(c)(4430)the resonances Y(4230),Y(4360),Y(4390),and Y(4660)cay behaviors will provide useful information for future experimental searches and theoretical interpretations.展开更多
Compared with the charmed baryons, the bottom baryons are not very well known, either experimentally Or theoretically. In this paper, we investigate the dipion strong decays of the P-wave and D-wave excited bottom bar...Compared with the charmed baryons, the bottom baryons are not very well known, either experimentally Or theoretically. In this paper, we investigate the dipion strong decays of the P-wave and D-wave excited bottom baryons in the framework of the QPC model. We also extend the same analysis to the charmed baryons.展开更多
文摘The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field theory of fermions and bosons: Z o and W ± as well as all quark-antiquark states (here only the tt¯state is discussed) are described by bound states with scalar coupling between their massless constituents and have a structure similar to leptons. However, the scalar Higgs-boson H o corresponds to a state with vector coupling between the elementary constituents. Similar scalar states are expected also in the mass region of the mesons ω (0.782 GeV) - Υ ( 9.46 GeV). The underlying calculations can be run on line using the Web-address https://h2909473.stratoserver.net.
文摘A chemical non-equilibrium equation for binding of massless quarks to antiquarks, combined with the spatial correlations occurring in the condensation process, yields a density dependent form of the double-well potential in the electroweak theory. The Higgs boson acquires mass, valence quarks emerge and antiparticles become suppressed when the system relaxes and symmetry breaks down. The hitherto unknown dimensionless coupling parameter to the superconductor-like potential becomes a re-gulator of the quark-antiquark asymmetry. Only a small amount of quarks become “visible”—the valence quarks, which are 13% of the total sum of all quarks and antiquarks—suggesting that the quarks-antiquark pair components of the becoming quark-antiquark sea play the role of dark matter. When quark-masses are in-weighted, this number approaches the observed ratio between ordinary matter and the sum of ordinary and dark matter. The model also provides a chemical non-equilibrium explanation for the information loss in black holes, such as of baryon number.
基金The project supported by National Natural Science Foundation of China under Grant No. 10405012
文摘Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We lind that if the current mass of strange quark m, is smmall, the strange quark matter remains stable unless the baryon density is very high. If m, is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.
文摘The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the authors’ name: Alireza Heidari and Seyedali Vedad. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.5 412-419, 2012, has been removed from this site.
文摘In this paper, a manifestation of the well-known color confinement from the QCD (quantum chromodynamics) in the newly developed YY model for the atomic nucleus is presented. There is a wonderful correspondence between the structural requirements from the YY model and some elementary properties of the color dynamics from QCD. The open questions in the YY model, namely the holding forces for triple nodes and for pairing space links, are exactly covered by the three-color compensation or by the paired color anti-color balance. We will see what colors and anti-colors do mean in the YY model, how up quarks and down quarks get assigned a color or anti-color. We will discover some relationships between gluon-based interactions as described in the standard model and pairing space links in the YY model.
基金Supported by the National Natural Science Foundation of China(11705056,12175037,11947224,11475192,11975245,U1832173)the Key Project of Hunan Provincial Education Department under(21A0039)+3 种基金the State Scholarship Fund of China Scholarship Council(22006725011)the Sino-German CRC 110“Symmetries and the Emergence of Structure in QCD”project by NSFC(12070131001)the Key Research Program of Frontier Sciences,CAS(Y7292610K1)the National Key Research and Development Program of China(2020YFA0406300)。
文摘We adopt the quark pair creation model to investigate the light meson emissions of several charmoniumlike states.The quark pair creation model is applied to four-body systems,and we calculate the pion/kaon emissions of X(4700),Z_(c)(4430),Y(4230),Y(4360),Y(4390),and Y(4660)within compact tetraquark configurations.We find that the pion/kaon decay widths of X(4700)and Z_(c)(4430)the resonances Y(4230),Y(4360),Y(4390),and Y(4660)cay behaviors will provide useful information for future experimental searches and theoretical interpretations.
基金Supported by National Natural Science Foundation of China(11222547,11175073,11035006,11375240,11261130311)Ministry of Education of China(FANEDD(200924)+2 种基金DPFIHE(20090211120029)NCET(NCET-10-0442)Fundamental Research Funds for Central Universities
文摘Compared with the charmed baryons, the bottom baryons are not very well known, either experimentally Or theoretically. In this paper, we investigate the dipion strong decays of the P-wave and D-wave excited bottom baryons in the framework of the QPC model. We also extend the same analysis to the charmed baryons.