Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological prote...Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.展开更多
Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence...Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.展开更多
To understand the water-salt transport process of saline soils in the Yellow River Delta region under traditional hydraulic remediation measures and to determine its engineering parameters, in this study, laboratory i...To understand the water-salt transport process of saline soils in the Yellow River Delta region under traditional hydraulic remediation measures and to determine its engineering parameters, in this study, laboratory investigations were made to measure the soil salt content using three remediation practices under simulated rainfall conditions. The results indicated that under the rainfall intensity of 100 mm/h, 6-8 h are needed when the soil salt content tends to be constant. The distribution of the salt content presents a typically symmetrical shape regardless of the position of the saline soil relative to the concealed pipe, the open ditch, and the vertical shaft. The two-parameter exponential function indicates the relationship between the soil desalination rate and the horizontal distance from the pipe, the ditch or the shaft. The maximum spacing to build the salt drainage engineering of the concealed pipe, the open ditch or the vertical shaft in the laboratory is 4.79 m, 2.88 m, and 2.19 m, respectively. The effectiveness of salt drainage for coastal saline soils can be ranked from largest to smallest as the concealed pipe, the open ditch and the vertical shaft. The findings provide an experimental basis and reference for the application of hydraulic measures to remediate saline soils in this region.展开更多
Coastal tidal creeks are important channels for exchanges of material and energy between sea and land,and play an important role in the ecological protection of tidal flats.Although tidal creeks have evolved different...Coastal tidal creeks are important channels for exchanges of material and energy between sea and land,and play an important role in the ecological protection of tidal flats.Although tidal creeks have evolved differently in various regions,the evolutionary process of tidal creeks in the Huanghe(Yellow)River delta of China,one of the most active deltas worldwide,is not entirely clear.Therefore,the evolution of tidal creeks in the delta from 1981 to 2021 was investigated by quantitatively analysing the tidal creeks and developing a standard for dividing their evolution periods.Visual interpretation and supervised classification methods were applied to the Landsat images to extract the tidal creek network,and 17 groups of tidal creek systems were selected.Results indicate that Creek S 1 was the most developed creek for having 113 tidal creeks totaling 65.8 km in length,while Creek E 3 had the fastest growth rate for having average annual increase of 1.9 km.Meanwhile,the level of tidal creeks increased,the average and median lengths of tidal creeks increased,and the number of tidal creeks decreased since 1981.The evolution of the tidal creek system could be divided into four stages,namely,rising,developing,stabilizing,and degrading.Analyses of a representative tidal creek show that there was no degenerated tidal creek during the rising period,with an increase in the number of 50 and a length increase of 57.9 km between 1981 and 1989.The proportion of new tidal creeks in the developing period was more than 50%and the new tidal creeks in the stabilizing period were equal to the degraded tidal creeks.Extinct tidal creeks were greater than 50%during the degrading period.There was no fixed order of tidal creek evolution in each period,and there may be a skip in evolution.Our findings provided a reference for studying the evolution of tidal creeks.展开更多
With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important ro...With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.展开更多
The dual-path model of industrial evolution and spatial progression has been widely acknowledged and incorporated into the strategic planning to promote the development of urban industries and regional collaborations....The dual-path model of industrial evolution and spatial progression has been widely acknowledged and incorporated into the strategic planning to promote the development of urban industries and regional collaborations.However,current research on inter-enter-prise city networks mainly focuses on the single sector of flows on all enterprise branches,such as product value chains and production factors,but neglects that of particular industry department.Built upon the new economic geography and city networks theory,this paper develops a methodological framework that focuses on the analysis of city network evolution characteristics of smart industry.Particu-larly,a conceptual model of smart industry enterprise-industry-city is proposed and then applied to a case study of smart industry in the Yangtze River Delta Region,China.Using enterprise supplier-customer data,a city network of smart industry is constructed and sub-sequently analyzed with the proposed model.Findings indicate that the smart industry network in Yangtze River Delta Region exhibits a hierarchical structure and the expansion of the network presents a small-world network characteristic.The study not only makes a meth-odological contribution for revealing the industrial and spatial evolution path of the current smart industry,but also provides empirical support for the formulation of new economic development policies focused on smart industries,demonstrating the role of city clusters as carriers of regional synergistic development.展开更多
The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an examp...Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an example,applies Huff and panel regres-sion models to evaluate the impact of hinterland manufacturing on the development of container ports during the period of 1993–2019.The results show that 1)the spatial patterns of hinterlands for hub ports help to determine the distribution range and scale of economic variables that affect port throughput;2)the hinterland’s gross manufacturing output has universally positive influence on port through-put,wherein export-oriented processing and the entire manufacturing industry have significantly positive impact on port throughput in 1993–2011 and 2001–2019,respectively;3)the two internal structural factors related to an export-oriented economy,labor-intensive sectors and foreign-funded terminals,have positively moderate the direct influence of hinterland manufacturing on port throughput.Our results highlight the importance of local context in understanding port-manufacturing relationship in developing economies.Based on our findings,policy implications are further proposed to enhance port network organization in PRD.展开更多
The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the regio...The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.展开更多
Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this s...Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.展开更多
City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordi...City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies.展开更多
Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon...Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.展开更多
Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present an...Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present and future urban agglomerations contributes to the rational planning of these areas and enhances the well-being of their inhabitants.Here,we analyzed land use conversion in the Yangtze River Delta(YRD)urban agglomeration during 1990-2020 and discussed the spatiotemporal response and main drivers of changes in ecosystem service value(ESV).By considering the different development strategic directions described in land use planning policies,we predicted land use conversion and its impact on ESV using the Future Land Use Simulation(FLUS)model in three scenari-os in 2025 and 2030.Results show that:1)from 1990 to 2020,land use change is mainly manifested as the continuous expansion of con-struction land to cultivated land.Among the reduced cultivated land,82.2%were occupied by construction land.2)The land use types conversion caused a loss of 21.85 billion yuan(RMB)in ESV during 1990-2020.Moreover,the large reduction of cultivated land area led to the continuous decline of food production value,accounting for 13%of the total ESV loss.3)From 2020 to 2030,land use change will mainly focus on Yangzhou and Zhenjiang in central Jiangsu Province and Taizhou in southern Zhejiang Province.Under the BAU(natural development)and ED(cultivated land protection)scenarios,construction land expansion remains dominant.In contrast,under the EP(ecological protection)scenario,the areas of water bodies and forest land increase significantly.Among the different scenarios,ESV is highest in the EP scenario,making it the optimal solution for sustainable land use.It can be seen that the space use conflict among urban,agriculture and ecology is a key factor leading to ESV change in the urban agglomeration of Yangtze River Delta.There-fore,it is crucial to maintain spatial land use coordination.Our findings provide suggestions for scientific and rational land use planning for the urban agglomeration.展开更多
The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource produ...The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.展开更多
Starting from the definition of agricultural structure,this paper firstly analyzes the change of industrial and spatial structure of agriculture of Pan-Yangtze River Delta,then inspects the relationship between the de...Starting from the definition of agricultural structure,this paper firstly analyzes the change of industrial and spatial structure of agriculture of Pan-Yangtze River Delta,then inspects the relationship between the development of economics and the evolution of agricultural structure,an the end it provides policy recommendation about the development and adjustment of agricultural structure for the future.展开更多
Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for ...Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for policymakers in developing effective regional conservation policies. Taking the Pearl River Delta Urban Agglomeration(PRDUA) in China as an example, we examined the heterogeneous response of carbon storage to land use changes in 1990–2018 from a combined view of administrative units and physical entities. The results indicate that the primary change in land use was due to the expansion of construction land(5897.16 km2). The carbon storage in PRDUA decreased from 767.34 Tg C in 1990 to 725.42 Tg C in 2018 with a spatial pattern of high wings and the low middle. The carbon storage loss was largely attributed to construction land expansion(55.74%), followed by forest degradation(54.81%). Changes in carbon storage showed significant divergences in different sized cities and hierarchical boundaries. The coefficients of geographically weighted regression(GWR) reveal that the alteration in carbon storage in Guangzhou City was more responsive to changes in construction land(-0.11) compared to other cities, while that in Shenzhen was mainly affected by the dynamics of forest land(8.32). The change in carbon storage was primarily influenced by the conversion of farmland within urban extent(5.05) and the degradation of forest land in rural areas(5.82). Carbon storage changes were less sensitive to the expansion of construction land in the urban center, urban built-up area, and ex-urban built-up area, with the corresponding GWR coefficients of 0.19, 0.04, and 0.02. This study necessitates the differentiated protection strategies of carbon storage in urban agglomerations.展开更多
The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the w...The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.展开更多
Based on the panel data of 41 cities in the Yangtze River Delta from 2007 to 2018,this paper empirically tests the impact of digital economy development on urban ecological efficiency in the Yangtze River Delta.The re...Based on the panel data of 41 cities in the Yangtze River Delta from 2007 to 2018,this paper empirically tests the impact of digital economy development on urban ecological efficiency in the Yangtze River Delta.The results show that the development level of digital economy in Yangtze River Delta urban agglomeration is fluctuating and rising;the development of digital economy has a significant positive role in promoting the improvement of urban ecological efficiency;there is significant regional heterogeneity in the promotion of ecological efficiency by digital economy,especially in central cities.展开更多
North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the neg...North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems.展开更多
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
基金supported by the National Key Research and Development Program of China(No.2022YFC3204301).
文摘Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.
基金financially supported by the National Natural Science Foundation of China(NSFC)(No.42377217)the Cooperation Fund between Dongying City and Universities(No.SXHZ-2023-02-6).
文摘Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.
基金supported by the National Natural Science Foundation of China(Grant No.51574156)the Key Development Program for Research of Shandong Province(Grant No.2018GNC110023).
文摘To understand the water-salt transport process of saline soils in the Yellow River Delta region under traditional hydraulic remediation measures and to determine its engineering parameters, in this study, laboratory investigations were made to measure the soil salt content using three remediation practices under simulated rainfall conditions. The results indicated that under the rainfall intensity of 100 mm/h, 6-8 h are needed when the soil salt content tends to be constant. The distribution of the salt content presents a typically symmetrical shape regardless of the position of the saline soil relative to the concealed pipe, the open ditch, and the vertical shaft. The two-parameter exponential function indicates the relationship between the soil desalination rate and the horizontal distance from the pipe, the ditch or the shaft. The maximum spacing to build the salt drainage engineering of the concealed pipe, the open ditch or the vertical shaft in the laboratory is 4.79 m, 2.88 m, and 2.19 m, respectively. The effectiveness of salt drainage for coastal saline soils can be ranked from largest to smallest as the concealed pipe, the open ditch and the vertical shaft. The findings provide an experimental basis and reference for the application of hydraulic measures to remediate saline soils in this region.
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR2021ME167)the Key Research and Development Program of Shandong Province(No.2022CXGC010401)。
文摘Coastal tidal creeks are important channels for exchanges of material and energy between sea and land,and play an important role in the ecological protection of tidal flats.Although tidal creeks have evolved differently in various regions,the evolutionary process of tidal creeks in the Huanghe(Yellow)River delta of China,one of the most active deltas worldwide,is not entirely clear.Therefore,the evolution of tidal creeks in the delta from 1981 to 2021 was investigated by quantitatively analysing the tidal creeks and developing a standard for dividing their evolution periods.Visual interpretation and supervised classification methods were applied to the Landsat images to extract the tidal creek network,and 17 groups of tidal creek systems were selected.Results indicate that Creek S 1 was the most developed creek for having 113 tidal creeks totaling 65.8 km in length,while Creek E 3 had the fastest growth rate for having average annual increase of 1.9 km.Meanwhile,the level of tidal creeks increased,the average and median lengths of tidal creeks increased,and the number of tidal creeks decreased since 1981.The evolution of the tidal creek system could be divided into four stages,namely,rising,developing,stabilizing,and degrading.Analyses of a representative tidal creek show that there was no degenerated tidal creek during the rising period,with an increase in the number of 50 and a length increase of 57.9 km between 1981 and 1989.The proportion of new tidal creeks in the developing period was more than 50%and the new tidal creeks in the stabilizing period were equal to the degraded tidal creeks.Extinct tidal creeks were greater than 50%during the degrading period.There was no fixed order of tidal creek evolution in each period,and there may be a skip in evolution.Our findings provided a reference for studying the evolution of tidal creeks.
基金Under the auscpices of Shandong Provincial Natural Science Foundation (No.ZR2020QD090)Research Funds of Beijing VMinFull Limted (No.VMF2021RS)+1 种基金National Natural Science Foundation of China (No.42176221)Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YICE351030601)。
文摘With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.
基金Under the auspices of National Natural Science Foundation of China(No.42330510,41871160)。
文摘The dual-path model of industrial evolution and spatial progression has been widely acknowledged and incorporated into the strategic planning to promote the development of urban industries and regional collaborations.However,current research on inter-enter-prise city networks mainly focuses on the single sector of flows on all enterprise branches,such as product value chains and production factors,but neglects that of particular industry department.Built upon the new economic geography and city networks theory,this paper develops a methodological framework that focuses on the analysis of city network evolution characteristics of smart industry.Particu-larly,a conceptual model of smart industry enterprise-industry-city is proposed and then applied to a case study of smart industry in the Yangtze River Delta Region,China.Using enterprise supplier-customer data,a city network of smart industry is constructed and sub-sequently analyzed with the proposed model.Findings indicate that the smart industry network in Yangtze River Delta Region exhibits a hierarchical structure and the expansion of the network presents a small-world network characteristic.The study not only makes a meth-odological contribution for revealing the industrial and spatial evolution path of the current smart industry,but also provides empirical support for the formulation of new economic development policies focused on smart industries,demonstrating the role of city clusters as carriers of regional synergistic development.
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.
基金Under the auspices of the National Natural Science Foundation of China(No.41930646)Guangdong Natural Science Foundation(No.2022A1515011572)。
文摘Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an example,applies Huff and panel regres-sion models to evaluate the impact of hinterland manufacturing on the development of container ports during the period of 1993–2019.The results show that 1)the spatial patterns of hinterlands for hub ports help to determine the distribution range and scale of economic variables that affect port throughput;2)the hinterland’s gross manufacturing output has universally positive influence on port through-put,wherein export-oriented processing and the entire manufacturing industry have significantly positive impact on port throughput in 1993–2011 and 2001–2019,respectively;3)the two internal structural factors related to an export-oriented economy,labor-intensive sectors and foreign-funded terminals,have positively moderate the direct influence of hinterland manufacturing on port throughput.Our results highlight the importance of local context in understanding port-manufacturing relationship in developing economies.Based on our findings,policy implications are further proposed to enhance port network organization in PRD.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41461011)。
文摘The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.
基金Under the auspices of Natural Science Foundation of China(No.U2106209,42071126)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050202)International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)。
文摘Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.
基金Under the auspices of the National Natural Science Foundation of China (No.72273151)。
文摘City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies.
文摘Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.
基金Under the auspices of National Natural Science Foundation of China(No.42276234)National Social Science Foundation Major Project of China(No.23&ZD105)+1 种基金the Open Fund of the Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources of China(No.2023CZEPK04)the Science and Technology Major Project of Ningbo(No.2021Z181)。
文摘Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present and future urban agglomerations contributes to the rational planning of these areas and enhances the well-being of their inhabitants.Here,we analyzed land use conversion in the Yangtze River Delta(YRD)urban agglomeration during 1990-2020 and discussed the spatiotemporal response and main drivers of changes in ecosystem service value(ESV).By considering the different development strategic directions described in land use planning policies,we predicted land use conversion and its impact on ESV using the Future Land Use Simulation(FLUS)model in three scenari-os in 2025 and 2030.Results show that:1)from 1990 to 2020,land use change is mainly manifested as the continuous expansion of con-struction land to cultivated land.Among the reduced cultivated land,82.2%were occupied by construction land.2)The land use types conversion caused a loss of 21.85 billion yuan(RMB)in ESV during 1990-2020.Moreover,the large reduction of cultivated land area led to the continuous decline of food production value,accounting for 13%of the total ESV loss.3)From 2020 to 2030,land use change will mainly focus on Yangzhou and Zhenjiang in central Jiangsu Province and Taizhou in southern Zhejiang Province.Under the BAU(natural development)and ED(cultivated land protection)scenarios,construction land expansion remains dominant.In contrast,under the EP(ecological protection)scenario,the areas of water bodies and forest land increase significantly.Among the different scenarios,ESV is highest in the EP scenario,making it the optimal solution for sustainable land use.It can be seen that the space use conflict among urban,agriculture and ecology is a key factor leading to ESV change in the urban agglomeration of Yangtze River Delta.There-fore,it is crucial to maintain spatial land use coordination.Our findings provide suggestions for scientific and rational land use planning for the urban agglomeration.
基金Sponsored by Talent Project of Tongling University(2021tlxyrc27).
文摘The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.
基金Supported by National Development and Reform Commission s ProjectResearch on the Economic Linkage and Division and Cooperation of Labor about Pan-Yangtze River Delta (2008-35-11)Anhui Philosophy and Social Project:Research on the Participation of Anhui in the Regional Development of Pan-Yangtze River Delta (AHS-KF07-08D53)
文摘Starting from the definition of agricultural structure,this paper firstly analyzes the change of industrial and spatial structure of agriculture of Pan-Yangtze River Delta,then inspects the relationship between the development of economics and the evolution of agricultural structure,an the end it provides policy recommendation about the development and adjustment of agricultural structure for the future.
基金Under the auspices of National Natural Science Foundation of China (No.42171414,41771429)the Open Fund of Guangdong Enterprise Key Laboratory for Urban SensingMonitoring and Early Warning (No.2020B121202019)。
文摘Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for policymakers in developing effective regional conservation policies. Taking the Pearl River Delta Urban Agglomeration(PRDUA) in China as an example, we examined the heterogeneous response of carbon storage to land use changes in 1990–2018 from a combined view of administrative units and physical entities. The results indicate that the primary change in land use was due to the expansion of construction land(5897.16 km2). The carbon storage in PRDUA decreased from 767.34 Tg C in 1990 to 725.42 Tg C in 2018 with a spatial pattern of high wings and the low middle. The carbon storage loss was largely attributed to construction land expansion(55.74%), followed by forest degradation(54.81%). Changes in carbon storage showed significant divergences in different sized cities and hierarchical boundaries. The coefficients of geographically weighted regression(GWR) reveal that the alteration in carbon storage in Guangzhou City was more responsive to changes in construction land(-0.11) compared to other cities, while that in Shenzhen was mainly affected by the dynamics of forest land(8.32). The change in carbon storage was primarily influenced by the conversion of farmland within urban extent(5.05) and the degradation of forest land in rural areas(5.82). Carbon storage changes were less sensitive to the expansion of construction land in the urban center, urban built-up area, and ex-urban built-up area, with the corresponding GWR coefficients of 0.19, 0.04, and 0.02. This study necessitates the differentiated protection strategies of carbon storage in urban agglomerations.
基金funded by the National Natural Science Foundation of China(42071245)the Xinjiang Uygur Autonomous Region Innovation Environment Construction Special Project&Science and Technology Innovation Base Construction Project(PT2107)+2 种基金the Third Xinjiang Comprehensive Scientific Survey Project Sub-topic(2021xjkk140305)the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region(2022TSYCLJ0011)the K.C.Wong Education Foundation(GJTD-2020-14).
文摘The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.
文摘Based on the panel data of 41 cities in the Yangtze River Delta from 2007 to 2018,this paper empirically tests the impact of digital economy development on urban ecological efficiency in the Yangtze River Delta.The results show that the development level of digital economy in Yangtze River Delta urban agglomeration is fluctuating and rising;the development of digital economy has a significant positive role in promoting the improvement of urban ecological efficiency;there is significant regional heterogeneity in the promotion of ecological efficiency by digital economy,especially in central cities.
文摘North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems.