Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential i...Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential is non-linearly distributed in the treatment process by the combined method.However,in the previous theoretical study,the non-linear-distribution impacts of soil’s electrical potential on soft soil foundation treatment have not been considered.It is always assumed to be linear distribution,which is different from the experimental results.In this paper,the coupling consolidation model of this technology under the two-dimensional plane strain condition is initially established;and the well resistance effect,the vacuum load decreasing along the soil depth and the non-linear variation of electrical potential in the soil are considered.Then,the analytical solutions of the average excess pore water pressure and soil’s consolidation degree in the anode affected area are acquired based on the soil’s electrical potential distribution.Finally,the rationality of the analytical solution is testified by conducting an experimental model test,which proves the scientificity of the analytical solution.The analytical solution is adopted to better predict the dissipation of excess pore water pressure and soil consolidation degree when using the combined technology.This study can provide a reference with more accuracy for the engineering practices of this combined technology in the future.展开更多
To investigate tumor-induced angiogenesis under the influence of the mechanical environments inside and outside the tumor, mathematical model of tumor angiogenesis was developed. In the model, extra-cellular matrix (...To investigate tumor-induced angiogenesis under the influence of the mechanical environments inside and outside the tumor, mathematical model of tumor angiogenesis was developed. In the model, extra-cellular matrix (ECM) was treated as a thin plane. The displacement of ECM is obtained from the force balance equation consisted of the ECs traction, the ECM visco-elastic forces and the exter- nal forces. Simulation results show that a layered capillary network is obtained with a well vascularized region at the periphery of the tumor. The present model can be used as a valid theoretical method in the basic researches in tumorinduced angiogenesis.展开更多
基金Project(51979087)supported by the National Natural Science Foundation of ChinaProject(BK20180776)supported by the Jiangsu Natural Science Foundation,ChinaProject(202006710002)supported by the China Scholarship Council。
文摘Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential is non-linearly distributed in the treatment process by the combined method.However,in the previous theoretical study,the non-linear-distribution impacts of soil’s electrical potential on soft soil foundation treatment have not been considered.It is always assumed to be linear distribution,which is different from the experimental results.In this paper,the coupling consolidation model of this technology under the two-dimensional plane strain condition is initially established;and the well resistance effect,the vacuum load decreasing along the soil depth and the non-linear variation of electrical potential in the soil are considered.Then,the analytical solutions of the average excess pore water pressure and soil’s consolidation degree in the anode affected area are acquired based on the soil’s electrical potential distribution.Finally,the rationality of the analytical solution is testified by conducting an experimental model test,which proves the scientificity of the analytical solution.The analytical solution is adopted to better predict the dissipation of excess pore water pressure and soil consolidation degree when using the combined technology.This study can provide a reference with more accuracy for the engineering practices of this combined technology in the future.
基金supported by the National Natural Science Foundation of China (10372026 and 10772751)Shanghai Leading Academic Discipline Project (B 112).
文摘To investigate tumor-induced angiogenesis under the influence of the mechanical environments inside and outside the tumor, mathematical model of tumor angiogenesis was developed. In the model, extra-cellular matrix (ECM) was treated as a thin plane. The displacement of ECM is obtained from the force balance equation consisted of the ECs traction, the ECM visco-elastic forces and the exter- nal forces. Simulation results show that a layered capillary network is obtained with a well vascularized region at the periphery of the tumor. The present model can be used as a valid theoretical method in the basic researches in tumorinduced angiogenesis.