Rhizobium tropici-derived extracellular polymeric substances (EPS) have been used in soils to enhance soil structures and mitigate soil erosions. However, information on their use to improve soil health and fertility ...Rhizobium tropici-derived extracellular polymeric substances (EPS) have been used in soils to enhance soil structures and mitigate soil erosions. However, information on their use to improve soil health and fertility indicators, and plant growth is limited. In a greenhouse study, we investigated their effects on some soil health, soil fertility indices, and the growth of black-eyed peas (Vigna unguiculate). Results showed that soils incubated with EPS significantly increased basal soil respiration, soil microbial biomass, permanganate oxidizable carbon (POC), and potentially mineralizable nitrogen (PMN). The EPS shifted microbial populations from bacteria to fungi and Gram (−ve) to Gram ( ve) bacteria. However, it had little or no effects on soil pH, soil organic matter (SOM), and cation exchange capacity (CEC). The EPS decreased soil moisture loss, increased soil aggregate stability, but delayed blacked-eyed peas germinations in the soils. At 0.1% (w/w) concentrations in soils, there was increase in plant root nodulations and vegetative growth. This study was carried out within 40 days of incubating soils with EPS or growing the black-eyed peas in a greenhouse study. The plant growth parameters were taken before flowering and fruiting. Further studies of the effects of incubating soils with the extracellular polymeric substances on plant growth. Soil microbial biomass, microbial diversities, and other soil fertility indices are deemed necessary.展开更多
A new method is developed to solve Biot's consolidation of a finite soil layer in the cylindrical coordinate system. Based on the governing equations of Biot's consolidation and the technique of Laplace transform, F...A new method is developed to solve Biot's consolidation of a finite soil layer in the cylindrical coordinate system. Based on the governing equations of Biot's consolidation and the technique of Laplace transform, Fourier expansions and Hankel transform with respect to time t, coordinate θ and coordinate r, respectively, a relationship of displacements, stresses, excess pore water pressure and flux is established between the ground surface (z = 0) and an arbitrary depth z in the Laplace and Hankel transform domain. By referring to proper boundary conditions of the finite soil layer, the solutions for displacements, stresses, excess pore water pressure and flux of any point in the transform domain can be obtained. The actual solutions in the physical domain can be acquired by inverting the Laplace and the Hankel transforms.展开更多
Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil...Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil erosion contrast test spots at Muzhe Village, Benggu Township, Xichou County, which was the birthplace of the Xichou rock-desertified land consolidation mode. The three spots included the terrace land spot (already consolidated land), sloping land spot (unconsolidated sloping land under rock desertification), and standard runoff spot (bare land spot). In 2007, a whole-year complete observation was conducted during the rainy season and "rainfall-erosion" data were obtained for 32 times. Our analysis showed that during the entire observation period, the number of the rainfalls that led to soil erosion accounted for 34.04% of the number of all rainfalls and the amount of the rainfalls that led to soil erosion accounted for 84.17% of the total amount of all rainfalls. The average erosive rainfall standard in the three test spots was 11.0mm, slightly higher than the lO mm standard that has been adopted all over China, but lower than the 12.7 mm standard of the US and the 13.0 mm standard of Japan. According to single-factor analysis, the soil loss in the sloping land spot (L2) and that in the bare land spot (L3) are correlated to certain extent to manyother factors, including the single precipitation (P), rainfall intensity during the maximum ten minutes (Lo), rainfall intensity during the maximum 20 minutes (I2o), rainfall intensity during the maximum 30 minutes (I30), rainfall intensity during the maximum 40 minutes (I4o), and rainfall intensity during the maximum 6o minutes (I60). Among these factors, they are of the highest relativity with I6o. According to double-factor analysis, both L2 and L3 are of good relativity with P and I60. According to multi-factor analysis, L2 and L3 are also of good relativity with seven rainfall indexes, namely, P, Ia (average rainfall intensity), L10, 120, I30, 140, and I60, with their related coefficient R reaching 0.906 and 0.914, respectively. The annual soil losses in the three test spots are widely different: 1030.70 t/km2.a in the terrace land spot, which indicates a low-level erosion; 12913.22 t/km2.a in the sloping land spot (unconsolidated spot), some 12.5 times than that in the terrace land spot, which indicates an ultra-high-level erosion; and 19511.67 t/km2-a in the bare land spot, some 18.9 times than that in terrace land spot, indicating an acute erosion. These figures fully show that the Xichou rock-desertified land consolidation mode plays a significant role in soil conservation.展开更多
Large-scale land consolidation projects(LCPs)have been carried out on the Loess Plateau to increase the area of agriculture land.The newly created land is prone to soil erosion under the effects of water and gravity.T...Large-scale land consolidation projects(LCPs)have been carried out on the Loess Plateau to increase the area of agriculture land.The newly created land is prone to soil erosion under the effects of water and gravity.Taking a typical high-filling body(HFB)formed by LCPs in Yan’an,China as the subject,this study comprehensively investigated the types and causes of soil erosion with multiple methods of field investigation,on-site monitoring and laboratory tests.Results showed that the HFB presented a composite pattern of soil erosion with multiple types mainly including underground erosion,mixed water-gravity erosion,seepage erosion,and scouring erosion.The type of erosion varied spatially in different parts of the HFB depending on the dominant factors,mainly including the groundwater state,rainfall,runoff,gravity action,topography,and soil erodibility.The underground erosion mainly occurred at the positions with higher groundwater level and larger hydraulic gradient,while scouring erosion mainly occurred at the positions with extensive interactions of surface runoff,channel slope gradient and soil properties.And near the leading edge of the top of the slope,a band of mixed watergravity erosion occurred owing to the effects of water and gravity.In addition,nearly saturated soils at the toe of HFB displayed groundwater exfiltration and slope-face slumping.Based on our findings on the causes and variation of soil erosion for the HFB,we proposed the following erosion prevention and control measures to protect the LCPs on the Loess Plateau:to construct drainage ditches and blind ditches to form a complete drainage system,plant alfalfa on the top platform to increase rainfall interception and reduce surface runoff,set seepage ditches and plant deep-rooted plants at the toe of the slope to improve slope toe stability,monitor groundwater level and slope deformation to learn the erosion dynamics and slope stability,and optimize the geometry of HFB such as the slope gradient and slope steps to reduce soil erosion.展开更多
Unsaturated soil is a three-phase media and is composed of soil grain,water and gas.In this paper,the consolidation problem of unsaturated soil is investigated based on the theory of mixture.A theoretical formula of e...Unsaturated soil is a three-phase media and is composed of soil grain,water and gas.In this paper,the consolidation problem of unsaturated soil is investigated based on the theory of mixture.A theoretical formula of effective stress on anisotropic porous media and unsaturated soil is derived.The principle of effective stress and the principle of Curie symmetry are taken as two fundamental constitutive principles of unsaturated soil.A mathematical model of consolidation of unsaturated soil is proposed,which consists of 25 partial differenfial equations with 25 unknowns.With the help of increament linearizing method,the model is reduced to 5 governing equations with 5 unknowns,i.e.,the three displacement components of solid phase,the pore water pressure and the pore gas pressure.7 material parameters are involved in the model and all of them can he measured using soil tests.It is convenient to use the model to engineering practice.The well known Biot's theory is a special case of the model.展开更多
The purpose is to study the microstructure and macroscopic fluid-dynamic behavior of soft soil after it has been subjected to a seepage consolidation procedure.First,the microscopic pore structure of soft clay is quan...The purpose is to study the microstructure and macroscopic fluid-dynamic behavior of soft soil after it has been subjected to a seepage consolidation procedure.First,the microscopic pore structure of soft clay is quantitatively studied by a scanning electron microscope technique.Second,the average contact area rate of soil particles is obtained employing statistical analysis applied to microscopic images of soft soil,and the macroscopic porosity of soft clay is determined through an indoor geotechnical test.Finally,mathematical relationships are introduced by fitting the results of the test.The results show that the unmodified empirical equation for the permeability coefficient of coarse-grained soil produces large errors in calculations related to cohesive soils.By contrast,the permeability coefficient calculated by the empirical equation modified by the average contact area ratio theory is in good agreement with the measured average value of the indoor test.展开更多
A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(C...A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(Cd)in soils.Fourier transform infrared spectra,X-ray diffraction were applied to revealing the characteristics of PHFP,and the modified Tessier sequential extraction and column leaching experiment with simulated acid rain were used to assess the effectiveness of immobilization of Cd and Pb in soils by PHFP.The results showed that PHFP was indeed a polymer with complicated OH-Fe-P structure and consisted of Fe6(OH)5(H2O)4(PO4)4(H2O)2and Fe25(PO4)14(OH)24.Moreover,the removal rates of DTPA-extractable Cd and Pb in soils reached up to33%and45%,and the water-soluble Cd and Pb decreased by56%and58%,respectively,when PHFP was added in soils at4%dosage.In addition,the immobilization of Cd and Pb contributed to transforming water soluble,exchangeable and carbonate-bonded fractions to Fe and Mn oxides-bonded,organic-bonded and residual fractions.Under leaching with simulated acid rain,Cd and Pb release amount in PHFP amended soil declined by53%and52%,respectively,as compared with non-treated soil.The result implied that PHFP had a potential application for the remediation of Cd-and Pb-contaminated soils.展开更多
In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress di...In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress.展开更多
Increasing the quantity and improving the quality of cropland can alleviate the human-land contradiction and promote the sustainable development of agriculture especially in mountainous areas.With the support of the c...Increasing the quantity and improving the quality of cropland can alleviate the human-land contradiction and promote the sustainable development of agriculture especially in mountainous areas.With the support of the central government’s policies,Yan’an,Northern Shaanxi,China implemented a major land consolidation engineering project in the loess hilly-gully region from 2013 to 2018,achieving 33,333.3 ha of new cropland.However,the poor quality of some newly-constructed cropland at the initial stage hindered its efficient utilization.In order to overcome this problem,red clay and Malan loess were compounded in different volume ratios to explore the method to improve the cropland quality.The Root Zone Water Quality Model was used to simulate the effects of different soil treatments on soil water,nitrogen and maize growth.Experimental data were collected from 2018 to 2019 to calibrate and validate the model.The root mean square error(RMSE)of soil water content,nitrate nitrogen concentration,above-ground biomass,leaf area index were in the range of 11.72-14.06 mm,4.06-11.73 mg kg^(-1),835.21-1151.28 kg ha^(-1)and 0.24-0.47,respectively,while the agreement index(d)between measured and simulated values ranged from 0.70 to 0.96.It was showed that,compared with land constructed with Malan loess only(T1),the soil structure and hydraulic characteristics of land with a volume ratio of red clay and Malan loess of 2:1(T3)was better.Simulation indicated that,compared with T1,the soil water content and available water content of T3 increased by 14.4%and 19.0%,respectively,while N leaching decreased by 16.9%.The aboveground biomass and maize yield of T3 were 7.9%and 6.7%higher than that of T1,respectively.Furthermore,the water productivity and nitrogen use efficiency of T3 increased by 21.0%and 16.6%compared with that of T1.These results indicated that compounding red clay and Malan loess in an appropriate ratio was an effective method to improve soil quality.This study provides a technical idea and specific technical parameters for the construction or improvement of cropland in loess hilly-gully region,which may also provide reference for similar projects in other places.展开更多
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group...To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects.展开更多
Soil physical properties(SPP)are considered to be important indices that reflect soil structure,hydrological conditions and soil quality.It is of substantial interest to study the spatial distribution of SPP owing to ...Soil physical properties(SPP)are considered to be important indices that reflect soil structure,hydrological conditions and soil quality.It is of substantial interest to study the spatial distribution of SPP owing to the high spatial variability caused by land consolidation under various land restoration modes in excavated farmland in the loess hilly area of China.In our study,three land restoration modes were selected including natural restoration land(NR),alfalfa land(AL)and maize land(ML).Soil texture composition,including the contents of clay,silt and sand,field capacity(FC),saturated conductivity(Ks)and bulk density(BD)were determined using a multifractal analysis.SPP were found to possess variable characteristics,although land consolidation destroyed the soil structure and decreased the spatial autocorrelation.Furthermore,SPP varied with land restoration and could be illustrated by the multifractal parameters of D1,ΔD,ΔαandΔf in different modes of land restoration.Owing to multiple compaction from large machinery in the surface soil,soil particles were fine-grained and increased the spatial variability in soil texture composition under all the land restoration modes.Plough numbers and vegetative root characteristics had the most significant impacts on the improvement in SPP,which resulted in the best spatial distribution characteristics of SPP found in ML compared with those in AL and NR.In addition,compared with ML,Δαvalues of NR and AL were 4.9-and 3.0-fold that of FC,respectively,andΔαvalues of NR and AL were 2.3-and 1.5-fold higher than those of Ks,respectively.These results indicate that SPP can be rapidly improved by increasing plough numbers and planting vegetation types after land consolidation.Thus,we conclude that ML is an optimal land restoration mode that results in favorable conditions to rapidly improve SPP.展开更多
The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied durin...The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied during 180 days of exposure to two types of forest soil:deciduous and coniferous.The weight loss,morphological,and structural changes of polymer composites were noticed after 180 days of the soil burial test.The greatest weight loss of all tested samples was observed in coniferous forest soil(41.8%–63.2%),while in deciduous forest soil,it ranged between 37.7%and 42.3%.The most significant changes in the intensities of the signals evaluated by attenuated total reflectance infrared spectroscopy,as well as morphological changes determined by scanning electron microscopy,were assessed for polymer composite with rapeseed cake and specimen without filler in coniferous forest soil and are in a good agreement with weight loss results.Whereas significantly lower changes in weight loss,morphology,and structure of polymeric film with pine bark were noticed in both soils.It was suggested that fungi of Trichoderma,Penicillium,Talaromyces and Clonostachys genera are the possible soil microorganisms that degrade linseed oil-based cross-linked polymer composites.Moreover,the novel polymer composites have the potential to be an environmentally friendly alternative to petroleum-based mulching films.展开更多
The building of the infrastructure on the compressible and saturated soils presents sometimes major difficulties. The infrastructure undergoes strong settlement that can be due to several phenomena of consolidation of...The building of the infrastructure on the compressible and saturated soils presents sometimes major difficulties. The infrastructure undergoes strong settlement that can be due to several phenomena of consolidation of the soils. The latter results from the dissipation of the excess pore pressure and deformation of the solid skeleton. Terzaghi theory led to the equation modeling the dissipation of excess pore pressure. The objective of this study is to establish solutions, by analytical and numerical method, of the equation of the pore water pressure. We considered a compressible saturated soil layer, between two drainage areas and subjected to a uniform load. Separation of variables is used to obtain an analytical solution and the finite element method for the numerical solution. The results obtained by the finite element method have validated those of analytical resolution.展开更多
Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used...Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used in chemical techniques may lead to increase atmospheric carbon dioxide. Numerous studies indicate that biochemical techniques may be less expensive, cost effective, and environmentally friendly. Biopolymers and enzymes derived from microorganisms have been suggested as biological enhancers in strengthening and fortifying soils used for earthen structures. Lime and other treatment techniques used as biobased materials have been shown to be less effective for stabilizing soils. Here, we review biochemical processes and techniques involved in the interactions of soil enzymes, microorganisms, microbial extracellular polymeric substances, and other biopolymers with soil particles, and the challenges and strategies of their use as biobased materials for stabilizing soils. This review provides their impacts on various soil properties and the growth potentials of agricultural crops. .展开更多
In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embank...In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.展开更多
A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or set...A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or settlement, and volumetric strain during the process ofconsolidation. Tests were performed using the apparatus on undisturbed soft clayey soil samples,which were collected from Wenzhou, Zhejiang Province, China, at average natural water content 72. 5%. The consolidation behavior of theclay has no rigorous difference, whether it is consolidatedunder the vacuum, surcharge, or combined vacuum-surcharge preloading. The study shows that somephysical properties of the soft clayey soils are changed and mechanical properties are improved tosupport excessive loads transferred to the soil foundation due to construction.展开更多
The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculat...The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.展开更多
Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,w...Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.展开更多
This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the ...This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the top surface permeable to water and air and the bottom impermeable to water and air. The analytical solution is for Fredlund's one-dimensional consolidation equation in unsaturated soils. The transfer relationship between the state vectors at top surface and any depth is obtained by using the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. Excess pore-air pressure, excess pore-water pressure and settlement in the Laplace-transformed domain are obtained by using the Laplace transform with the initial conditions and boundary conditions. By performing inverse Laplace transforms, the analytical solutions are obtained in the time domain. A typical example illustrates the consolidation characteristics of unsaturated soil from an- alytical results. Finally, comparisons between the analytical solutions and results of the finite difference method indicate that the analytical solution is correct.展开更多
It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the...It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure.展开更多
文摘Rhizobium tropici-derived extracellular polymeric substances (EPS) have been used in soils to enhance soil structures and mitigate soil erosions. However, information on their use to improve soil health and fertility indicators, and plant growth is limited. In a greenhouse study, we investigated their effects on some soil health, soil fertility indices, and the growth of black-eyed peas (Vigna unguiculate). Results showed that soils incubated with EPS significantly increased basal soil respiration, soil microbial biomass, permanganate oxidizable carbon (POC), and potentially mineralizable nitrogen (PMN). The EPS shifted microbial populations from bacteria to fungi and Gram (−ve) to Gram ( ve) bacteria. However, it had little or no effects on soil pH, soil organic matter (SOM), and cation exchange capacity (CEC). The EPS decreased soil moisture loss, increased soil aggregate stability, but delayed blacked-eyed peas germinations in the soils. At 0.1% (w/w) concentrations in soils, there was increase in plant root nodulations and vegetative growth. This study was carried out within 40 days of incubating soils with EPS or growing the black-eyed peas in a greenhouse study. The plant growth parameters were taken before flowering and fruiting. Further studies of the effects of incubating soils with the extracellular polymeric substances on plant growth. Soil microbial biomass, microbial diversities, and other soil fertility indices are deemed necessary.
基金the National Natural Science Foundation of China (50578121)
文摘A new method is developed to solve Biot's consolidation of a finite soil layer in the cylindrical coordinate system. Based on the governing equations of Biot's consolidation and the technique of Laplace transform, Fourier expansions and Hankel transform with respect to time t, coordinate θ and coordinate r, respectively, a relationship of displacements, stresses, excess pore water pressure and flux is established between the ground surface (z = 0) and an arbitrary depth z in the Laplace and Hankel transform domain. By referring to proper boundary conditions of the finite soil layer, the solutions for displacements, stresses, excess pore water pressure and flux of any point in the transform domain can be obtained. The actual solutions in the physical domain can be acquired by inverting the Laplace and the Hankel transforms.
基金funded by the National Natural Science Foundation of China (No. 40661010)
文摘Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil erosion contrast test spots at Muzhe Village, Benggu Township, Xichou County, which was the birthplace of the Xichou rock-desertified land consolidation mode. The three spots included the terrace land spot (already consolidated land), sloping land spot (unconsolidated sloping land under rock desertification), and standard runoff spot (bare land spot). In 2007, a whole-year complete observation was conducted during the rainy season and "rainfall-erosion" data were obtained for 32 times. Our analysis showed that during the entire observation period, the number of the rainfalls that led to soil erosion accounted for 34.04% of the number of all rainfalls and the amount of the rainfalls that led to soil erosion accounted for 84.17% of the total amount of all rainfalls. The average erosive rainfall standard in the three test spots was 11.0mm, slightly higher than the lO mm standard that has been adopted all over China, but lower than the 12.7 mm standard of the US and the 13.0 mm standard of Japan. According to single-factor analysis, the soil loss in the sloping land spot (L2) and that in the bare land spot (L3) are correlated to certain extent to manyother factors, including the single precipitation (P), rainfall intensity during the maximum ten minutes (Lo), rainfall intensity during the maximum 20 minutes (I2o), rainfall intensity during the maximum 30 minutes (I30), rainfall intensity during the maximum 40 minutes (I4o), and rainfall intensity during the maximum 6o minutes (I60). Among these factors, they are of the highest relativity with I6o. According to double-factor analysis, both L2 and L3 are of good relativity with P and I60. According to multi-factor analysis, L2 and L3 are also of good relativity with seven rainfall indexes, namely, P, Ia (average rainfall intensity), L10, 120, I30, 140, and I60, with their related coefficient R reaching 0.906 and 0.914, respectively. The annual soil losses in the three test spots are widely different: 1030.70 t/km2.a in the terrace land spot, which indicates a low-level erosion; 12913.22 t/km2.a in the sloping land spot (unconsolidated spot), some 12.5 times than that in the terrace land spot, which indicates an ultra-high-level erosion; and 19511.67 t/km2-a in the bare land spot, some 18.9 times than that in terrace land spot, indicating an acute erosion. These figures fully show that the Xichou rock-desertified land consolidation mode plays a significant role in soil conservation.
基金the National Natural Science Foundation of China(Grant Nos.41790443,41927806,and 32071586)the Fundamental Research Funds for the Central Universities(Grant Nos.300102212213)Young Talent Fund of Association for Science and Technology in Shaanxi,China(Grant No.20220707)。
文摘Large-scale land consolidation projects(LCPs)have been carried out on the Loess Plateau to increase the area of agriculture land.The newly created land is prone to soil erosion under the effects of water and gravity.Taking a typical high-filling body(HFB)formed by LCPs in Yan’an,China as the subject,this study comprehensively investigated the types and causes of soil erosion with multiple methods of field investigation,on-site monitoring and laboratory tests.Results showed that the HFB presented a composite pattern of soil erosion with multiple types mainly including underground erosion,mixed water-gravity erosion,seepage erosion,and scouring erosion.The type of erosion varied spatially in different parts of the HFB depending on the dominant factors,mainly including the groundwater state,rainfall,runoff,gravity action,topography,and soil erodibility.The underground erosion mainly occurred at the positions with higher groundwater level and larger hydraulic gradient,while scouring erosion mainly occurred at the positions with extensive interactions of surface runoff,channel slope gradient and soil properties.And near the leading edge of the top of the slope,a band of mixed watergravity erosion occurred owing to the effects of water and gravity.In addition,nearly saturated soils at the toe of HFB displayed groundwater exfiltration and slope-face slumping.Based on our findings on the causes and variation of soil erosion for the HFB,we proposed the following erosion prevention and control measures to protect the LCPs on the Loess Plateau:to construct drainage ditches and blind ditches to form a complete drainage system,plant alfalfa on the top platform to increase rainfall interception and reduce surface runoff,set seepage ditches and plant deep-rooted plants at the toe of the slope to improve slope toe stability,monitor groundwater level and slope deformation to learn the erosion dynamics and slope stability,and optimize the geometry of HFB such as the slope gradient and slope steps to reduce soil erosion.
文摘Unsaturated soil is a three-phase media and is composed of soil grain,water and gas.In this paper,the consolidation problem of unsaturated soil is investigated based on the theory of mixture.A theoretical formula of effective stress on anisotropic porous media and unsaturated soil is derived.The principle of effective stress and the principle of Curie symmetry are taken as two fundamental constitutive principles of unsaturated soil.A mathematical model of consolidation of unsaturated soil is proposed,which consists of 25 partial differenfial equations with 25 unknowns.With the help of increament linearizing method,the model is reduced to 5 governing equations with 5 unknowns,i.e.,the three displacement components of solid phase,the pore water pressure and the pore gas pressure.7 material parameters are involved in the model and all of them can he measured using soil tests.It is convenient to use the model to engineering practice.The well known Biot's theory is a special case of the model.
基金This work was supported by a key research projects of Henan higher schools(No.21B560006).
文摘The purpose is to study the microstructure and macroscopic fluid-dynamic behavior of soft soil after it has been subjected to a seepage consolidation procedure.First,the microscopic pore structure of soft clay is quantitatively studied by a scanning electron microscope technique.Second,the average contact area rate of soil particles is obtained employing statistical analysis applied to microscopic images of soft soil,and the macroscopic porosity of soft clay is determined through an indoor geotechnical test.Finally,mathematical relationships are introduced by fitting the results of the test.The results show that the unmodified empirical equation for the permeability coefficient of coarse-grained soil produces large errors in calculations related to cohesive soils.By contrast,the permeability coefficient calculated by the empirical equation modified by the average contact area ratio theory is in good agreement with the measured average value of the indoor test.
基金Project(2012GS430203)supported by Science and Technology Program for Public Wellbeing,ChinaProject(51504299)supported by the National Natural Science Foundation of ChinaProject(2015WK3016)supported by Science and Technology Program of Hunan Province,China
文摘A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(Cd)in soils.Fourier transform infrared spectra,X-ray diffraction were applied to revealing the characteristics of PHFP,and the modified Tessier sequential extraction and column leaching experiment with simulated acid rain were used to assess the effectiveness of immobilization of Cd and Pb in soils by PHFP.The results showed that PHFP was indeed a polymer with complicated OH-Fe-P structure and consisted of Fe6(OH)5(H2O)4(PO4)4(H2O)2and Fe25(PO4)14(OH)24.Moreover,the removal rates of DTPA-extractable Cd and Pb in soils reached up to33%and45%,and the water-soluble Cd and Pb decreased by56%and58%,respectively,when PHFP was added in soils at4%dosage.In addition,the immobilization of Cd and Pb contributed to transforming water soluble,exchangeable and carbonate-bonded fractions to Fe and Mn oxides-bonded,organic-bonded and residual fractions.Under leaching with simulated acid rain,Cd and Pb release amount in PHFP amended soil declined by53%and52%,respectively,as compared with non-treated soil.The result implied that PHFP had a potential application for the remediation of Cd-and Pb-contaminated soils.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172211 and 41630633)the National Key Research and Development Project of China(Grant No.2019YFC1509800).
文摘In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress.
基金supported by the National Natural Science Foundation of China(Grant No.41931293)the National Key Research and Development Program of China(Grant No.2017YFC0504701)。
文摘Increasing the quantity and improving the quality of cropland can alleviate the human-land contradiction and promote the sustainable development of agriculture especially in mountainous areas.With the support of the central government’s policies,Yan’an,Northern Shaanxi,China implemented a major land consolidation engineering project in the loess hilly-gully region from 2013 to 2018,achieving 33,333.3 ha of new cropland.However,the poor quality of some newly-constructed cropland at the initial stage hindered its efficient utilization.In order to overcome this problem,red clay and Malan loess were compounded in different volume ratios to explore the method to improve the cropland quality.The Root Zone Water Quality Model was used to simulate the effects of different soil treatments on soil water,nitrogen and maize growth.Experimental data were collected from 2018 to 2019 to calibrate and validate the model.The root mean square error(RMSE)of soil water content,nitrate nitrogen concentration,above-ground biomass,leaf area index were in the range of 11.72-14.06 mm,4.06-11.73 mg kg^(-1),835.21-1151.28 kg ha^(-1)and 0.24-0.47,respectively,while the agreement index(d)between measured and simulated values ranged from 0.70 to 0.96.It was showed that,compared with land constructed with Malan loess only(T1),the soil structure and hydraulic characteristics of land with a volume ratio of red clay and Malan loess of 2:1(T3)was better.Simulation indicated that,compared with T1,the soil water content and available water content of T3 increased by 14.4%and 19.0%,respectively,while N leaching decreased by 16.9%.The aboveground biomass and maize yield of T3 were 7.9%and 6.7%higher than that of T1,respectively.Furthermore,the water productivity and nitrogen use efficiency of T3 increased by 21.0%and 16.6%compared with that of T1.These results indicated that compounding red clay and Malan loess in an appropriate ratio was an effective method to improve soil quality.This study provides a technical idea and specific technical parameters for the construction or improvement of cropland in loess hilly-gully region,which may also provide reference for similar projects in other places.
基金the financial supports from the Key Research and Development Program of Guangxi(No.GUIKE AB22080061)the Guangxi Transportation Industry Key Science and Technology Projects(No.GXJT-2020-02-08)+2 种基金the National Natural Science Foundation of China(No.52268062)the Guangxi Key Project of Nature Science Foundation(No.2020GXNSFDA238024)。
文摘To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects.
基金The study was funded by the National Key Research and Development Program of China(2017YFD0800502)the National Natural Science Foundation of China(41671510).
文摘Soil physical properties(SPP)are considered to be important indices that reflect soil structure,hydrological conditions and soil quality.It is of substantial interest to study the spatial distribution of SPP owing to the high spatial variability caused by land consolidation under various land restoration modes in excavated farmland in the loess hilly area of China.In our study,three land restoration modes were selected including natural restoration land(NR),alfalfa land(AL)and maize land(ML).Soil texture composition,including the contents of clay,silt and sand,field capacity(FC),saturated conductivity(Ks)and bulk density(BD)were determined using a multifractal analysis.SPP were found to possess variable characteristics,although land consolidation destroyed the soil structure and decreased the spatial autocorrelation.Furthermore,SPP varied with land restoration and could be illustrated by the multifractal parameters of D1,ΔD,ΔαandΔf in different modes of land restoration.Owing to multiple compaction from large machinery in the surface soil,soil particles were fine-grained and increased the spatial variability in soil texture composition under all the land restoration modes.Plough numbers and vegetative root characteristics had the most significant impacts on the improvement in SPP,which resulted in the best spatial distribution characteristics of SPP found in ML compared with those in AL and NR.In addition,compared with ML,Δαvalues of NR and AL were 4.9-and 3.0-fold that of FC,respectively,andΔαvalues of NR and AL were 2.3-and 1.5-fold higher than those of Ks,respectively.These results indicate that SPP can be rapidly improved by increasing plough numbers and planting vegetation types after land consolidation.Thus,we conclude that ML is an optimal land restoration mode that results in favorable conditions to rapidly improve SPP.
文摘The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied during 180 days of exposure to two types of forest soil:deciduous and coniferous.The weight loss,morphological,and structural changes of polymer composites were noticed after 180 days of the soil burial test.The greatest weight loss of all tested samples was observed in coniferous forest soil(41.8%–63.2%),while in deciduous forest soil,it ranged between 37.7%and 42.3%.The most significant changes in the intensities of the signals evaluated by attenuated total reflectance infrared spectroscopy,as well as morphological changes determined by scanning electron microscopy,were assessed for polymer composite with rapeseed cake and specimen without filler in coniferous forest soil and are in a good agreement with weight loss results.Whereas significantly lower changes in weight loss,morphology,and structure of polymeric film with pine bark were noticed in both soils.It was suggested that fungi of Trichoderma,Penicillium,Talaromyces and Clonostachys genera are the possible soil microorganisms that degrade linseed oil-based cross-linked polymer composites.Moreover,the novel polymer composites have the potential to be an environmentally friendly alternative to petroleum-based mulching films.
文摘The building of the infrastructure on the compressible and saturated soils presents sometimes major difficulties. The infrastructure undergoes strong settlement that can be due to several phenomena of consolidation of the soils. The latter results from the dissipation of the excess pore pressure and deformation of the solid skeleton. Terzaghi theory led to the equation modeling the dissipation of excess pore pressure. The objective of this study is to establish solutions, by analytical and numerical method, of the equation of the pore water pressure. We considered a compressible saturated soil layer, between two drainage areas and subjected to a uniform load. Separation of variables is used to obtain an analytical solution and the finite element method for the numerical solution. The results obtained by the finite element method have validated those of analytical resolution.
文摘Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used in chemical techniques may lead to increase atmospheric carbon dioxide. Numerous studies indicate that biochemical techniques may be less expensive, cost effective, and environmentally friendly. Biopolymers and enzymes derived from microorganisms have been suggested as biological enhancers in strengthening and fortifying soils used for earthen structures. Lime and other treatment techniques used as biobased materials have been shown to be less effective for stabilizing soils. Here, we review biochemical processes and techniques involved in the interactions of soil enzymes, microorganisms, microbial extracellular polymeric substances, and other biopolymers with soil particles, and the challenges and strategies of their use as biobased materials for stabilizing soils. This review provides their impacts on various soil properties and the growth potentials of agricultural crops. .
基金The National Natural Science Foundation of China(No.51378121)
文摘In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.
文摘A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or settlement, and volumetric strain during the process ofconsolidation. Tests were performed using the apparatus on undisturbed soft clayey soil samples,which were collected from Wenzhou, Zhejiang Province, China, at average natural water content 72. 5%. The consolidation behavior of theclay has no rigorous difference, whether it is consolidatedunder the vacuum, surcharge, or combined vacuum-surcharge preloading. The study shows that somephysical properties of the soft clayey soils are changed and mechanical properties are improved tosupport excessive loads transferred to the soil foundation due to construction.
基金National Natural Science Foundation of China under Grant No.51108163Natural Science Foundation of Heilongjiang Province under Grant No.E201104
文摘The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.
基金Project(2012JQ7013)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(QN2012025)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011BSJJ084)supported by Research Foundation of Northwest A&F University,China
文摘Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.
文摘This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the top surface permeable to water and air and the bottom impermeable to water and air. The analytical solution is for Fredlund's one-dimensional consolidation equation in unsaturated soils. The transfer relationship between the state vectors at top surface and any depth is obtained by using the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. Excess pore-air pressure, excess pore-water pressure and settlement in the Laplace-transformed domain are obtained by using the Laplace transform with the initial conditions and boundary conditions. By performing inverse Laplace transforms, the analytical solutions are obtained in the time domain. A typical example illustrates the consolidation characteristics of unsaturated soil from an- alytical results. Finally, comparisons between the analytical solutions and results of the finite difference method indicate that the analytical solution is correct.
文摘It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure.