At the scheme design stage,the potential of daylighting is significant due to the saving for electric lighting use. There are few simple tools for architects to optimize the daylighting design. Therefore,it is useful ...At the scheme design stage,the potential of daylighting is significant due to the saving for electric lighting use. There are few simple tools for architects to optimize the daylighting design. Therefore,it is useful to develop a design guideline related to the evaluation of lighting energy saving potential and sunlight design strategies. This paper analyzes the impacts of different artificial lighting control methods and design parameters on daylighting. A direct correlation between lighting energy consumption and parameters such as orientations,window to wall ratio (WWR) and perimeter depth is established. A simplified prediction model is proposed to estimate lighting energy consumption with the given perimeter depth,WWR,and window transparency. Validation of the model is carried out compared with detailed lighting simulation software for an office building. After the variation analysis for these parameters,design advises for the daylighting design at scheme design phase are summarized.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
With the expansion of cloud computing,optimizing the energy efficiency and cost of the cloud paradigm is considered significantly important,since it directly affects providers’revenue and customers’payment.Thus,prov...With the expansion of cloud computing,optimizing the energy efficiency and cost of the cloud paradigm is considered significantly important,since it directly affects providers’revenue and customers’payment.Thus,providing prediction information of the cloud services can be very beneficial for the service providers,as they need to carefully predict their business growths and efficiently manage their resources.To optimize the use of cloud services,predictive mechanisms can be applied to improve resource utilization and reduce energy-related costs.However,such mechanisms need to be provided with energy awareness not only at the level of the Physical Machine(PM)but also at the level of the Virtual Machine(VM)in order to make improved cost decisions.Therefore,this paper presents a comprehensive literature review on the subject of energy-related cost issues and prediction models in cloud computing environments,along with an overall discussion of the closely related works.The outcomes of this research can be used and incorporated by predictive resource management techniques to make improved cost decisions assisted with energy awareness and leverage cloud resources efficiently.展开更多
Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analys...Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.展开更多
Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management syst...Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management systems or restrictions due to privacy policies),the availability of occupational data has long been an obstacle that hinders the performance of machine learning algorithms in predicting building energy consumption.Therefore,this study proposed an agent⁃based machine learning model whereby agent⁃based modelling was employed to generate simulated occupational data as input features for machine learning algorithms for building energy consumption prediction.Boruta feature selection was also introduced in this study to select all relevant features.The results indicated that the performances of machine learning algorithms in predicting building energy consumption were significantly improved when using simulated occupational data,with even greater improvements after conducting Boruta feature selection.展开更多
The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in ma...The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in machine learning and predictive models.This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory(LSTM)units.The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy.This optimization algorithm is based on the recently emerged dipper-throated optimization(DTO)and stochastic fractal search(SFS)algo-rithm and is referred to as dynamic DTOSFS.To prove the effectiveness and superiority of the proposed approach,five standard benchmark algorithms,namely,stochastic fractal search(SFS),dipper throated optimization(DTO),whale optimization algorithm(WOA),particle swarm optimization(PSO),and grey wolf optimization(GWO),are used to optimize the parameters of the LSTM-based model,and the results are compared with that of the proposed approach.Experimental results show that the proposed DDTOSFS+LSTM can accurately forecast the energy consumption with root mean square error RMSE of 0.00013,which is the best among the recorded results of the other methods.In addition,statistical experiments are conducted to prove the statistical difference of the proposed model.The results of these tests confirmed the expected outcomes.展开更多
The prediction of building energy consumption offers essential technical support for intelligent operation and maintenance of buildings,promoting energy conservation and low-carbon control.This paper focused on the en...The prediction of building energy consumption offers essential technical support for intelligent operation and maintenance of buildings,promoting energy conservation and low-carbon control.This paper focused on the energy consumption of heating,ventilation and air conditioning(HVAC)systems operating under various modes across different seasons.We constructed multi-attribute and high-dimensional clustering vectors that encompass indoor and outdoor environmental parameters,along with historical energy consumption data.To enhance the K-means algorithm,we employed statistical feature extraction and dimensional normalization(SFEDN)to facilitate data clustering and deconstruction.This method,combined with the gated recurrent unit(GRU)prediction model employing adaptive training based on the Particle Swarm Optimization algorithm,was evaluated for robustness and stability through k-fold cross-validation.Within the clustering-based modeling framework,optimal submodels were configured based on the statistical features of historical 24-hour data to achieve dynamic prediction using multiple models.The dynamic prediction models with SFEDN cluster showed a 11.9%reduction in root mean square error(RMSE)compared to static prediction,achieving a coefficient of determination(R2)of 0.890 and a mean absolute percentage error(MAPE)reduction of 19.9%.When compared to dynamic prediction based on single-attribute of HVAC systems energy consumption clustering modeling,RMSE decreased by 12.6%,R2 increased by 4.0%,and MAPE decreased by 26.3%.The dynamic prediction performance demonstrated that the SFEDN clustering method surpasses conventional clustering method,and multi-attribute clustering modeling outperforms single-attribute modeling.展开更多
Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their dail...Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning,but the prediction accuracy still needs to be improved.The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy;problems,such as over fitting,occur in the process of improving prediction accuracy.The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction.By combining the two prediction algorithms,the fusion of prediction performance is achieved,the limit of the single prediction performance is crossed,and the goal of improving vehicle speed prediction performance is achieved.In this paper,an extraction method suitable for fixed route vehicle speed is designed.The application of Markov and back propagation(BP)neural network in predictions is introduced.Three new combined prediction methods,all named Markov and BP Neural Network(MBNN)combined prediction algorithm,are proposed,which make full use of the advantages of Markov and BP neural network algorithms.Finally,the comparison among the prediction methods has been carried out.The results show that the three MBNN models have improved by about 19%,28%,and 29%compared with the Markov prediction model,which has better performance in the single prediction models.Overall,the MBNN combined prediction models can improve the prediction accuracy by 25.3%on average,which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.展开更多
基金Project(2006BAJ02A02) supported by the National Key Technologies R & D Program of China
文摘At the scheme design stage,the potential of daylighting is significant due to the saving for electric lighting use. There are few simple tools for architects to optimize the daylighting design. Therefore,it is useful to develop a design guideline related to the evaluation of lighting energy saving potential and sunlight design strategies. This paper analyzes the impacts of different artificial lighting control methods and design parameters on daylighting. A direct correlation between lighting energy consumption and parameters such as orientations,window to wall ratio (WWR) and perimeter depth is established. A simplified prediction model is proposed to estimate lighting energy consumption with the given perimeter depth,WWR,and window transparency. Validation of the model is carried out compared with detailed lighting simulation software for an office building. After the variation analysis for these parameters,design advises for the daylighting design at scheme design phase are summarized.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
文摘With the expansion of cloud computing,optimizing the energy efficiency and cost of the cloud paradigm is considered significantly important,since it directly affects providers’revenue and customers’payment.Thus,providing prediction information of the cloud services can be very beneficial for the service providers,as they need to carefully predict their business growths and efficiently manage their resources.To optimize the use of cloud services,predictive mechanisms can be applied to improve resource utilization and reduce energy-related costs.However,such mechanisms need to be provided with energy awareness not only at the level of the Physical Machine(PM)but also at the level of the Virtual Machine(VM)in order to make improved cost decisions.Therefore,this paper presents a comprehensive literature review on the subject of energy-related cost issues and prediction models in cloud computing environments,along with an overall discussion of the closely related works.The outcomes of this research can be used and incorporated by predictive resource management techniques to make improved cost decisions assisted with energy awareness and leverage cloud resources efficiently.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ01A13-2) supported by the National Key Technologies R & D Program of China
文摘Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.
文摘Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management systems or restrictions due to privacy policies),the availability of occupational data has long been an obstacle that hinders the performance of machine learning algorithms in predicting building energy consumption.Therefore,this study proposed an agent⁃based machine learning model whereby agent⁃based modelling was employed to generate simulated occupational data as input features for machine learning algorithms for building energy consumption prediction.Boruta feature selection was also introduced in this study to select all relevant features.The results indicated that the performances of machine learning algorithms in predicting building energy consumption were significantly improved when using simulated occupational data,with even greater improvements after conducting Boruta feature selection.
基金funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,Grant No (43-PRFA-P-52).
文摘The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in machine learning and predictive models.This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory(LSTM)units.The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy.This optimization algorithm is based on the recently emerged dipper-throated optimization(DTO)and stochastic fractal search(SFS)algo-rithm and is referred to as dynamic DTOSFS.To prove the effectiveness and superiority of the proposed approach,five standard benchmark algorithms,namely,stochastic fractal search(SFS),dipper throated optimization(DTO),whale optimization algorithm(WOA),particle swarm optimization(PSO),and grey wolf optimization(GWO),are used to optimize the parameters of the LSTM-based model,and the results are compared with that of the proposed approach.Experimental results show that the proposed DDTOSFS+LSTM can accurately forecast the energy consumption with root mean square error RMSE of 0.00013,which is the best among the recorded results of the other methods.In addition,statistical experiments are conducted to prove the statistical difference of the proposed model.The results of these tests confirmed the expected outcomes.
基金supported by the National Natural Science Foundation of China(No.52108074)the National Natural Science Foundation of China(No.52078144).
文摘The prediction of building energy consumption offers essential technical support for intelligent operation and maintenance of buildings,promoting energy conservation and low-carbon control.This paper focused on the energy consumption of heating,ventilation and air conditioning(HVAC)systems operating under various modes across different seasons.We constructed multi-attribute and high-dimensional clustering vectors that encompass indoor and outdoor environmental parameters,along with historical energy consumption data.To enhance the K-means algorithm,we employed statistical feature extraction and dimensional normalization(SFEDN)to facilitate data clustering and deconstruction.This method,combined with the gated recurrent unit(GRU)prediction model employing adaptive training based on the Particle Swarm Optimization algorithm,was evaluated for robustness and stability through k-fold cross-validation.Within the clustering-based modeling framework,optimal submodels were configured based on the statistical features of historical 24-hour data to achieve dynamic prediction using multiple models.The dynamic prediction models with SFEDN cluster showed a 11.9%reduction in root mean square error(RMSE)compared to static prediction,achieving a coefficient of determination(R2)of 0.890 and a mean absolute percentage error(MAPE)reduction of 19.9%.When compared to dynamic prediction based on single-attribute of HVAC systems energy consumption clustering modeling,RMSE decreased by 12.6%,R2 increased by 4.0%,and MAPE decreased by 26.3%.The dynamic prediction performance demonstrated that the SFEDN clustering method surpasses conventional clustering method,and multi-attribute clustering modeling outperforms single-attribute modeling.
基金National Natural Science Foundation of China(Grant No.51775478)Hebei Provincial Natural Science Foundation of China(Grant Nos.E2016203173,E2020203078).
文摘Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning,but the prediction accuracy still needs to be improved.The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy;problems,such as over fitting,occur in the process of improving prediction accuracy.The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction.By combining the two prediction algorithms,the fusion of prediction performance is achieved,the limit of the single prediction performance is crossed,and the goal of improving vehicle speed prediction performance is achieved.In this paper,an extraction method suitable for fixed route vehicle speed is designed.The application of Markov and back propagation(BP)neural network in predictions is introduced.Three new combined prediction methods,all named Markov and BP Neural Network(MBNN)combined prediction algorithm,are proposed,which make full use of the advantages of Markov and BP neural network algorithms.Finally,the comparison among the prediction methods has been carried out.The results show that the three MBNN models have improved by about 19%,28%,and 29%compared with the Markov prediction model,which has better performance in the single prediction models.Overall,the MBNN combined prediction models can improve the prediction accuracy by 25.3%on average,which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.