The paper presents the formulation and approximation of a static thermoelasticity problem that describes bilateral frictional contact between a deformable body and a rigid foundation. The friction is in the form of a ...The paper presents the formulation and approximation of a static thermoelasticity problem that describes bilateral frictional contact between a deformable body and a rigid foundation. The friction is in the form of a nonmonotone and multivalued law. The coupling effect of the problem is neglected. Therefore, the thermic part of the problem is considered independently on the elasticity problem. For the displacement vector, we formulate one substationary problem for a non-convex, locally Lipschitz continuous functional representing the total potential energy of the body. All problems formulated in the paper are approximated with the finite element method.展开更多
In a recent publication the author derived and experimentally tested several theoretical models, distinguished by different boundary conditions at the contacts with horizontal and vertical supports, that predicted the...In a recent publication the author derived and experimentally tested several theoretical models, distinguished by different boundary conditions at the contacts with horizontal and vertical supports, that predicted the forces of reaction on a fixed (i.e. inextensible) ladder. This problem is statically indeterminate since there are 4 forces of reaction and only 3 equations of static equilibrium. The model that predicted the empirical reactions correctly used a law of static friction to complement the equations of static equilibrium. The present paper examines in greater theoretical and experimental detail the role of friction in accounting for the forces of reaction on a fixed ladder. The reported measurements confirm that forces parallel and normal to the support at the top of the ladder are linearly proportional with a constant coefficient of friction irrespective of the magnitude or location of the load, as assumed in the theoretical model. However, measurements of forces parallel and normal to the support at the base of the ladder are linearly proportional with coefficients that depend sensitively on the location (although not the magnitude) of the load. This paper accounts quantitatively for the different effects of friction at the top and base of the ladder under conditions of usual use whereby friction at the vertical support alone is insufficient to keep the ladder from sliding. A theoretical model is also proposed for the unusual circumstance in which friction at the vertical support can keep the ladder from sliding.展开更多
We consider a mathematical model which describes the static frictional contact between a piezoelectric body and a conductive foundation.A non linear electro-elastic constitutive law is used to model the piezoelectric ...We consider a mathematical model which describes the static frictional contact between a piezoelectric body and a conductive foundation.A non linear electro-elastic constitutive law is used to model the piezoelectric material.The unilateral contact is modelled using the Signorini condition,nonlocal Coulomb friction law with slip dependent friction coefficient and a regularized electrical conductivity condition.Existence and uniqueness of a weak solution is established.A finite elements approximation of the problem is presented,a priori error estimates of the solutions are derived and a convergent successive iteration technique is proposed.展开更多
基金supported by the Minisitry of Science of the Republic of Serbia (No. 144005)
文摘The paper presents the formulation and approximation of a static thermoelasticity problem that describes bilateral frictional contact between a deformable body and a rigid foundation. The friction is in the form of a nonmonotone and multivalued law. The coupling effect of the problem is neglected. Therefore, the thermic part of the problem is considered independently on the elasticity problem. For the displacement vector, we formulate one substationary problem for a non-convex, locally Lipschitz continuous functional representing the total potential energy of the body. All problems formulated in the paper are approximated with the finite element method.
文摘In a recent publication the author derived and experimentally tested several theoretical models, distinguished by different boundary conditions at the contacts with horizontal and vertical supports, that predicted the forces of reaction on a fixed (i.e. inextensible) ladder. This problem is statically indeterminate since there are 4 forces of reaction and only 3 equations of static equilibrium. The model that predicted the empirical reactions correctly used a law of static friction to complement the equations of static equilibrium. The present paper examines in greater theoretical and experimental detail the role of friction in accounting for the forces of reaction on a fixed ladder. The reported measurements confirm that forces parallel and normal to the support at the top of the ladder are linearly proportional with a constant coefficient of friction irrespective of the magnitude or location of the load, as assumed in the theoretical model. However, measurements of forces parallel and normal to the support at the base of the ladder are linearly proportional with coefficients that depend sensitively on the location (although not the magnitude) of the load. This paper accounts quantitatively for the different effects of friction at the top and base of the ladder under conditions of usual use whereby friction at the vertical support alone is insufficient to keep the ladder from sliding. A theoretical model is also proposed for the unusual circumstance in which friction at the vertical support can keep the ladder from sliding.
文摘We consider a mathematical model which describes the static frictional contact between a piezoelectric body and a conductive foundation.A non linear electro-elastic constitutive law is used to model the piezoelectric material.The unilateral contact is modelled using the Signorini condition,nonlocal Coulomb friction law with slip dependent friction coefficient and a regularized electrical conductivity condition.Existence and uniqueness of a weak solution is established.A finite elements approximation of the problem is presented,a priori error estimates of the solutions are derived and a convergent successive iteration technique is proposed.