The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz...The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.展开更多
The steel industry is considered an important basic sector of the national economy,and its high energy consumption and carbon emissions make it a major contributor to climate change,especially in China.The majority of...The steel industry is considered an important basic sector of the national economy,and its high energy consumption and carbon emissions make it a major contributor to climate change,especially in China.The majority of crude steel in China is produced via the energy-and carbon-intensive blast furnace–basic oxygen furnace(BF–BOF)route,which greatly relies on coking coal.In recent years,China’s steel sector has made significant progress in energy conservation and emission reduction,driven by decarbonization policies and regulations.However,due to the huge output of crude steel,the steel sector still produces 15%of the total national CO_(2) emissions.The direct reduced iron(DRI)plus scrap–electric arc furnace(EAF)process is currently considered a good alternative to the conventional route as a means of reducing CO_(2) emissions and the steel industry’s reliance on iron ore and coking coal,since the gas-based DRI plus scrap–EAF route is expected to be more promising than the coal-based one.Unfortunately,almost no DRI is produced in China,seriously restricting the development of the EAF route.Here,we highlight the challenges and pathways of the future development of DRI,with a focus on China.In the short term,replacing natural gas with coke oven gas(COG)and byproduct gas from the integrated refining and chemical sector is a more economically feasible and cleaner way to develop a gas-based route in China.As the energy revolution proceeds,using fossil fuels in combination with carbon capture,utilization,and storage(CCUS)and hydrogen will be a good alternative due to the relatively low cost.In the long term,DRI is expected to be produced using 100%hydrogen from renewable energy.Both the development of deep processing technologies and the invention of a novel binder are required to prepare high-quality pellets for direct reduction(DR),and further research on the one-step gas-based process is necessary.展开更多
The direct rolling process for hot strip production,where the thin slab caster is connected directly to the mill,has gained market share rapidly because of its remarkable advantages in terms of energy savings and inve...The direct rolling process for hot strip production,where the thin slab caster is connected directly to the mill,has gained market share rapidly because of its remarkable advantages in terms of energy savings and investment cost over the conventional hot strip mills. However,the unquestionable advantages of the first-generation applications of this plant concept also entail significant limitations both in productivity and steel grades that can be produced. Since his first pioneering applications,Danieli considered strategic the development of new technical solutions specifically conceived to overcome these limitations with the goal of increasing plant production volumes and enlarging steel grade product mix,in order to cover the gap between "Conventional mill" and "Thin slab casting and rolling" process routes. In order to reach this goal,Danieli has developed a complete portfolio of plant lay outs adopting Thin Slab Casting and Rolling technologies,each of them conceived to guarantee the optimal CAPEX and OPEX parameters in fitting with market requirements our Customer intend to target.in terms of productivity,steel grades and coil dimension product mix. Danieli TSR(Thin Slab Rolling) fTSR(flexible Thins Slab Rolling) QSP(Quality Strip Production) and ETR(Extra Thin Rolling) plant configurations are analyzed in this paper. With this diversified approach,Danieli solutions are most appropriate answers to thin slab casting and rolling to produce hot rolled coils with superior quality and an extremely diversified range of steel grades. Already,this approach has allowed Danieli plants to:①exceed the threshold production of 3.0 Mt/a with 2 casting strands in operation as done in Tangshan Iron and Steel plant in P.R.China since 2005;②expand the product mix to include virtually all the steel grades used for flat product applications,including the most demanding ones,such as peritectic(in Essar Algoma Canada and Benxi Iron and Steel,China),micro-alloyed,and silicon steels,for the most sophisticated applications,such as automotive and pipe manufacturing,including Arctic applications,(as done in OMK plant in Russia);③extend the range of final strip thicknesses to include ultra thin gauges,down to 0.8 mm(as in Ezz Flat Steel,in Egypt).展开更多
The M_S8.0 Wenchuan earthquake in Sichuan caused heavy casualties and serious economic loss because of damage to engineering structures in high earthquake intensity regions. Earthquake intensity, especially in the nea...The M_S8.0 Wenchuan earthquake in Sichuan caused heavy casualties and serious economic loss because of damage to engineering structures in high earthquake intensity regions. Earthquake intensity, especially in the near source region, as a macroscopic description of distribution of strong ground motions certain correlations with the earthquake source process, such as rupture directivity and the hanging-wall effect of the near-fault ground motions of this earthquake. In this article some qualitative analyses are carried out. The conclusion of this study may be useful for emergence response and rescue after earthquakes, when the strong ground motion recordings and the intensity distribution are not available immediately.展开更多
Directionally solidified binary Mg-Al eutectic alloy wires of approximately 5 mm in diameter were produced by the Ohno continuous casting (OCC) process and the microstructure was examined. It was found that the wire...Directionally solidified binary Mg-Al eutectic alloy wires of approximately 5 mm in diameter were produced by the Ohno continuous casting (OCC) process and the microstructure was examined. It was found that the wires possess obvious unidirectional growth characteristic along its axial direction. The microstructure consists of parallel columnar grains that resulted from the competitive growth of equiaxed grains solidified on the head of dummy bar. Each columnar grain comprises regular eutectic a-Mg and β-Mg17 Al12 phases, which grew along the axial direction of the wires. The morphology of the eutectic is mainly lamellar, meanwhile rod eutectic exists. The formation of rod eutectic was attributed to the "bridging effect" caused by incidental elements in the alloy.展开更多
Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation ...Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation due to their excellent fluid permeability,mechanical properties,etc.In this article,we summarize the recent directional porous ceramics developments including their main processing routes and respective properties.Meanwhile,the properties get from different processing routes have been com-pared and analyzed in terms of microstructures,mechanical properties,and permeability.Emphasis has been given to the deeper understanding which can allow one to control the microstructural features of these porous ceramic composites to obtain the desired characteristics.This work can provide a useful reference for the development and application of porous ceramic composites with directional microchan-nels.展开更多
Currently, the majority of copper tailings are not effectively developed. Worldwide, large amounts of copper tailings generated from copper production are continuously dumped, posing a potential environmental threat. ...Currently, the majority of copper tailings are not effectively developed. Worldwide, large amounts of copper tailings generated from copper production are continuously dumped, posing a potential environmental threat. Herein, the recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation was conducted; process optimization was carried out, and the corresponding mineralogy was investigated. The reduction time, reduction temperature, reducing agent (coal), calcium chloride additive, grinding time, and magnetic field intensity were examined for process optimization. Mineralogical analyses of the sample, reduced pellets, and magnetic concentrate under various conditions were performed by X-ray diffraction, optical microscopy, and scanning electron microscopy-energy-dispersive X-ray spectrometry to elucidate the iron reduction and growth mechanisms. The results indicated that the optimum parameters of iron recovery include a reduction temperature of 1150A degrees C, a reduction time of 120 min, a coal dosage of 25%, a calcium chloride dosage of 2.5%, a magnetic field intensity of 100 mT, and a grinding time of 1 min. Under these conditions, the iron grade in the magnetic concentrate was greater than 90%, with an iron recovery ratio greater than 95%.展开更多
A one-dimensional unsteady mathematical model was established to describe direct reduction in a composite pellet made of metallurgical dust. The model considered heat transfer, mass transfer, and chemical reactions in...A one-dimensional unsteady mathematical model was established to describe direct reduction in a composite pellet made of metallurgical dust. The model considered heat transfer, mass transfer, and chemical reactions including iron oxide reductions, zinc oxide reduction and carbon gasification, and it was numerically solved by the tridiagonal matrix algorithm (TDMA). In order to verify the model, an experiment was performed, in which the profiles of temperature and zinc removal rate were measured during the reduction process. Results calculated by the mathematical model were in fairly good agreement with experimental data. Finally, the effects of furnace temperature, pellet size, and carbon content were investigated by model calculations. It is found that the pellet temperature curve can be divided into four parts according to heating rate. Also, the zinc removal rate increases with the increase of furnace temperature and the decrease of pellet size, and carbon content in the pellet has little influence on the zinc removal rate.展开更多
Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was con...Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage.展开更多
1|CURRENT UNDERSTANDING OF LNCRNAS Long non-coding RNAs(lncRNAs)are a class of regulatory RNA molecules that have captured the attention of researchers in recent years due to their diverse roles in development,physiol...1|CURRENT UNDERSTANDING OF LNCRNAS Long non-coding RNAs(lncRNAs)are a class of regulatory RNA molecules that have captured the attention of researchers in recent years due to their diverse roles in development,physiological and pathological processes.展开更多
Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The u...Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The unknown explosion limits of the multi-component feed gas mixture make it difficult to optimize the reaction process under safe operation conditions.In this work,a distribution method is proposed and verified to be effective by comparing estimated and experimental explosion limits of more than 200 kinds of flammable gas mixture.Then,it is employed to estimate the explosion limits of the feed gas mixture,some results of which are also validated by the classic Le Chatelier’s Rule and flammable resistance method.Based on the estimated explosion limits,process optimization is carried out using commercially high and inherently safe reactant concentrations to enhance reaction performance.The promising results are directly obtained through the interface called gOPT in gPROMS only by using a simple,easy-constructed and mature packed-bed reactor,such as the PO yield of 13.3%,PO selectivity of 85.1%and outlet PO fraction of 1.8%.These results can be rationalized by indepth analyses and discussion about the effects of the decision variables on the operation safety and reaction performance.The insights revealed here could shed new light on the process development of the PO production based on the estimation of the explosion limits of the multi-component feed gas mixture containing flammable gase s,inert gas and O2,followed by process optimization.展开更多
In the framework of the relativistic mean field theory (RMFT), the relativistic energy losses of the direct Urea processes with hyperons (Y-DURCA ) for reactions A → p + e + υe and ≡^-→ A+e+υe are studied...In the framework of the relativistic mean field theory (RMFT), the relativistic energy losses of the direct Urea processes with hyperons (Y-DURCA ) for reactions A → p + e + υe and ≡^-→ A+e+υe are studied in neutron stars. We calculate the energy gap of A hyperons and investigate the effects of the ^1S0 superfluidity (SF) of A hyperons on the Y-DURCA processes. The calculated results are in line with the recent experimental data △ BAA ~ 1.01 ±0.20-0.11^+0.18 MeV. The results indicate that the ^1S0 SF of A hyperons exists in most density ranges of happening the two reactions. The theoretical cooling curves are in agreement with observation data.展开更多
The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and witho...The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.展开更多
The main types of defect in the (Tb_(0.3)Dy_(0.7))Fe_(1.95) alloys with the 'one-step' directional solidification process were investigated. The effect of the dendrite, grain boundaries, twin boundaries, and R...The main types of defect in the (Tb_(0.3)Dy_(0.7))Fe_(1.95) alloys with the 'one-step' directional solidification process were investigated. The effect of the dendrite, grain boundaries, twin boundaries, and REFe_3 precipitates on the magnetostrictive response of the (Tb_(0.3)Dy_(0.7))Fe_(1.95) alloys was analyzed respectively. The experiment results demonstrate that the dendrite, twin boundaries, and REFe_3 precipitates can be avoided by modifying alloying ingredient, solidification parameters and annealing technique. The dendritic growth front often leads to dendrite sheet, rare earth-rich phase, and twin boundaries. The lower proportion of rare earth, or slow solidification rate, results in the occurrence of REFe_3 precipitatates. It is vital for diminishing the defects to control the undercooling of solid-liquid interface at (2.4~5.1)×10~4 K·s·cm^(-2) so that the crystal grows in cellular growth front.展开更多
A novel universal preprocessing method is proposed to estimate angles of arrival,which is applicable to one-or two-dimensional high resolution processing based on arbitrarycenter-symmetric arrays (such as uniform line...A novel universal preprocessing method is proposed to estimate angles of arrival,which is applicable to one-or two-dimensional high resolution processing based on arbitrarycenter-symmetric arrays (such as uniform linear arrays, equal-spaced rectangular planar arraysand symmetric circular arrays). By mapping the complex signal space into the real one, the newmethod can effectively reduce the computation needed by the signal subspace direction findingtechniques without any performance degradation. In addition, the new preprocessing scheme itselfcan decorrelate the coherent signals received on the array. For regular array geometry such asuniform linear arrays and equal-spaced rectangular planar arrays, the popular spatial smoothingpreprocessing technique can be combined with the novel approach to improve the decorrelatingability. Simulation results confirm the above conclusions.展开更多
Two problems for task schedules in a multiprocessor parallel system are discussed in Ans paper (1) given a partially ordered set of tasks represented by the venices of an acyclic directed graph with their correspondin...Two problems for task schedules in a multiprocessor parallel system are discussed in Ans paper (1) given a partially ordered set of tasks represented by the venices of an acyclic directed graph with their corresponding processing bines, derive the lower bound on the Annimum time(LBMT) needed to process the task graph for a given number of processors. (2) Determine the lower bound on minimum number of processors(LBMP) needed to complete those tasks in minimum bine. It is shown that the proposed LBMT is sharper than previously Known values and the comPUtational aspeCts of these bounds are also discussed.展开更多
Objective: To characterise a novel multifunctional pharmaceutical excipient and investigate its ef ect on paracetamol release from tablets prepared by direct compression.Methods: The excipient was prepared by co-proce...Objective: To characterise a novel multifunctional pharmaceutical excipient and investigate its ef ect on paracetamol release from tablets prepared by direct compression.Methods: The excipient was prepared by co-processing gelatinized maize starch with sodium carboxymethyl cellulose and microcrystalline cellulose in a ratio of 2:1:1, dried and pulverized into powder. The excipient formulated was characterized using Fourier transform infrared spectroscopy and dif erential scanning calorimetry. The excipient was used to prepare batches of tablets by direct compression with drug-excipient ratios of 1:1, 1:2, 1:3 and 1:4. Parameters evaluated on tablets include crushing strength, friability and in vitro dissolution studies. Results: Differential scanning calorimetry analysis revealed a crystalline excipient while Fourier transform infrared spectroscopy showed no interaction between the excipient and paracetamol. Tablets from all the batches gave average crushing strength values between 3.47 and 4.88 kp. The 1:1 and 1:2 tablet batches were comparable to each other while 1:3 and 1:4 were also comparable to one another in their dissolution proi les. The dissolution parameters of the 1:4 batch was faster with- m∞(90.5%), t50%(3.5 min), t70%(11.6 min) while that of ratio 1:1 was the least with- m∞(48.6%), m5min(23.8%). Their release kinetics followed a KorsmeyerPeppas model with a super case-II transport mechanism.Conclusions: The drug-excipient ratios of 1:3 and 1:4 gave pharmaceutically acceptable tablets that met the British Pharmacopoeia specii cations. The t50% value of the 1:4 batch of tablets may i nd its usefulness in formulating drugs for which a fast onset of action is desired.展开更多
On the basis of the unified calculation of the thermal shifts of R1 line, R2 line and ground-state-splitting transition probabilities of direct and Raman processes have theoretically been calculated. The thermal broad...On the basis of the unified calculation of the thermal shifts of R1 line, R2 line and ground-state-splitting transition probabilities of direct and Raman processes have theoretically been calculated. The thermal broadenings of R,The theoretically predicted transition probabilities are in good agreement with the experimental ones.PACS numbers: 71.70.Ch, 78.20.Nv, 63.20.Mt, 63.20.展开更多
The use of ethanol is a promising method to reduce the emissions of diesel engines.The present study has been based on the installation of a gasoline electronic injection system in a single-cylinder diesel engine to c...The use of ethanol is a promising method to reduce the emissions of diesel engines.The present study has been based on the installation of a gasoline electronic injection system in a single-cylinder diesel engine to control the amount of ethanol entering the cylinder during the compression(while diesel has been injected into the cylinder by the original pump injection system).The injection time has been controlled by crank angle signal collected by an AVL angle indicator.In the tests ethanol and diesel each accounted for half of the fuel volume,and the total heat energy supply of the fuel was equivalent to that of the diesel under the operating conditions of the original engine.A three-dimensional combustion model of the diesel engine has been implemented by using the CFD software FIRE.Simulations have been carried out assuming uniform and non-uniform injections rate for the different holes and the different results have been compared.According to these results,a non-uniform injection rate can produce early ignition and cause an increase in the maximum in-cylinder pressure and the maximum average incylinder temperature.Moreover,in such conditions NO emissions are larger while soot emission is slightly lower.展开更多
基金the financial support from the National Key Research and Development Program of China(2022YFB4101302-01)the National Natural Science Foundation of China(22178243)the science and technology innovation project of China Shenhua Coal to Liquid and Chemical Company Limited(MZYHG-22–02).
文摘The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.
基金supported by the Strategic Research and Consulting Project of Chinese Academy of Engineering(2022-XY-91)the Basic Science Center Project for National Natural Science Foundation of China(72088101)the Key Project of YueLuShan Center Industrial Innovation(2023YCII0105).
文摘The steel industry is considered an important basic sector of the national economy,and its high energy consumption and carbon emissions make it a major contributor to climate change,especially in China.The majority of crude steel in China is produced via the energy-and carbon-intensive blast furnace–basic oxygen furnace(BF–BOF)route,which greatly relies on coking coal.In recent years,China’s steel sector has made significant progress in energy conservation and emission reduction,driven by decarbonization policies and regulations.However,due to the huge output of crude steel,the steel sector still produces 15%of the total national CO_(2) emissions.The direct reduced iron(DRI)plus scrap–electric arc furnace(EAF)process is currently considered a good alternative to the conventional route as a means of reducing CO_(2) emissions and the steel industry’s reliance on iron ore and coking coal,since the gas-based DRI plus scrap–EAF route is expected to be more promising than the coal-based one.Unfortunately,almost no DRI is produced in China,seriously restricting the development of the EAF route.Here,we highlight the challenges and pathways of the future development of DRI,with a focus on China.In the short term,replacing natural gas with coke oven gas(COG)and byproduct gas from the integrated refining and chemical sector is a more economically feasible and cleaner way to develop a gas-based route in China.As the energy revolution proceeds,using fossil fuels in combination with carbon capture,utilization,and storage(CCUS)and hydrogen will be a good alternative due to the relatively low cost.In the long term,DRI is expected to be produced using 100%hydrogen from renewable energy.Both the development of deep processing technologies and the invention of a novel binder are required to prepare high-quality pellets for direct reduction(DR),and further research on the one-step gas-based process is necessary.
文摘The direct rolling process for hot strip production,where the thin slab caster is connected directly to the mill,has gained market share rapidly because of its remarkable advantages in terms of energy savings and investment cost over the conventional hot strip mills. However,the unquestionable advantages of the first-generation applications of this plant concept also entail significant limitations both in productivity and steel grades that can be produced. Since his first pioneering applications,Danieli considered strategic the development of new technical solutions specifically conceived to overcome these limitations with the goal of increasing plant production volumes and enlarging steel grade product mix,in order to cover the gap between "Conventional mill" and "Thin slab casting and rolling" process routes. In order to reach this goal,Danieli has developed a complete portfolio of plant lay outs adopting Thin Slab Casting and Rolling technologies,each of them conceived to guarantee the optimal CAPEX and OPEX parameters in fitting with market requirements our Customer intend to target.in terms of productivity,steel grades and coil dimension product mix. Danieli TSR(Thin Slab Rolling) fTSR(flexible Thins Slab Rolling) QSP(Quality Strip Production) and ETR(Extra Thin Rolling) plant configurations are analyzed in this paper. With this diversified approach,Danieli solutions are most appropriate answers to thin slab casting and rolling to produce hot rolled coils with superior quality and an extremely diversified range of steel grades. Already,this approach has allowed Danieli plants to:①exceed the threshold production of 3.0 Mt/a with 2 casting strands in operation as done in Tangshan Iron and Steel plant in P.R.China since 2005;②expand the product mix to include virtually all the steel grades used for flat product applications,including the most demanding ones,such as peritectic(in Essar Algoma Canada and Benxi Iron and Steel,China),micro-alloyed,and silicon steels,for the most sophisticated applications,such as automotive and pipe manufacturing,including Arctic applications,(as done in OMK plant in Russia);③extend the range of final strip thicknesses to include ultra thin gauges,down to 0.8 mm(as in Ezz Flat Steel,in Egypt).
基金funded by basic research fund programs DQJB08B02 and DQJB06A01 of state-level public welfare scientific research institutions of Institute of Geophysics,CEA
文摘The M_S8.0 Wenchuan earthquake in Sichuan caused heavy casualties and serious economic loss because of damage to engineering structures in high earthquake intensity regions. Earthquake intensity, especially in the near source region, as a macroscopic description of distribution of strong ground motions certain correlations with the earthquake source process, such as rupture directivity and the hanging-wall effect of the near-fault ground motions of this earthquake. In this article some qualitative analyses are carried out. The conclusion of this study may be useful for emergence response and rescue after earthquakes, when the strong ground motion recordings and the intensity distribution are not available immediately.
基金the Shaanxi Provincial Natural Science Research Project(No.2003E111)Scientific research project of Education Department of Shaanxi Province(No.07JK358)the Industrialization Cultivation Project of Education Department of Shaanxi Province(No.04JC24).
文摘Directionally solidified binary Mg-Al eutectic alloy wires of approximately 5 mm in diameter were produced by the Ohno continuous casting (OCC) process and the microstructure was examined. It was found that the wires possess obvious unidirectional growth characteristic along its axial direction. The microstructure consists of parallel columnar grains that resulted from the competitive growth of equiaxed grains solidified on the head of dummy bar. Each columnar grain comprises regular eutectic a-Mg and β-Mg17 Al12 phases, which grew along the axial direction of the wires. The morphology of the eutectic is mainly lamellar, meanwhile rod eutectic exists. The formation of rod eutectic was attributed to the "bridging effect" caused by incidental elements in the alloy.
基金supported by the National Science and Technol-ogy Major Project(No.J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12202343)the China Postdoctoral Science Foundation(No.2021M702582).
文摘Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation due to their excellent fluid permeability,mechanical properties,etc.In this article,we summarize the recent directional porous ceramics developments including their main processing routes and respective properties.Meanwhile,the properties get from different processing routes have been com-pared and analyzed in terms of microstructures,mechanical properties,and permeability.Emphasis has been given to the deeper understanding which can allow one to control the microstructural features of these porous ceramic composites to obtain the desired characteristics.This work can provide a useful reference for the development and application of porous ceramic composites with directional microchan-nels.
基金financially supported by the National Natural Science Foundation of China (No. 51674026)
文摘Currently, the majority of copper tailings are not effectively developed. Worldwide, large amounts of copper tailings generated from copper production are continuously dumped, posing a potential environmental threat. Herein, the recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation was conducted; process optimization was carried out, and the corresponding mineralogy was investigated. The reduction time, reduction temperature, reducing agent (coal), calcium chloride additive, grinding time, and magnetic field intensity were examined for process optimization. Mineralogical analyses of the sample, reduced pellets, and magnetic concentrate under various conditions were performed by X-ray diffraction, optical microscopy, and scanning electron microscopy-energy-dispersive X-ray spectrometry to elucidate the iron reduction and growth mechanisms. The results indicated that the optimum parameters of iron recovery include a reduction temperature of 1150A degrees C, a reduction time of 120 min, a coal dosage of 25%, a calcium chloride dosage of 2.5%, a magnetic field intensity of 100 mT, and a grinding time of 1 min. Under these conditions, the iron grade in the magnetic concentrate was greater than 90%, with an iron recovery ratio greater than 95%.
基金the Fundamen-tal Research Funds for Central Universities(No.FRF-SD-12-013A)the State Key Laboratory of Advanced Metallurgy,China
文摘A one-dimensional unsteady mathematical model was established to describe direct reduction in a composite pellet made of metallurgical dust. The model considered heat transfer, mass transfer, and chemical reactions including iron oxide reductions, zinc oxide reduction and carbon gasification, and it was numerically solved by the tridiagonal matrix algorithm (TDMA). In order to verify the model, an experiment was performed, in which the profiles of temperature and zinc removal rate were measured during the reduction process. Results calculated by the mathematical model were in fairly good agreement with experimental data. Finally, the effects of furnace temperature, pellet size, and carbon content were investigated by model calculations. It is found that the pellet temperature curve can be divided into four parts according to heating rate. Also, the zinc removal rate increases with the increase of furnace temperature and the decrease of pellet size, and carbon content in the pellet has little influence on the zinc removal rate.
基金financially supported by the National Basic Research Program of China (No. 2012CB720401)the National Key Technology Research and Development Program of China (No. 2011BAC01B02)
文摘Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage.
基金National Natural Science Foundation of ChinaGrant/Award Number:31970598 and 32170557+3 种基金Anhui Provincial Key Research and Development ProjectGrant/Award Number:2022e07020020Research Funds of Centre for Leading Medicine and Advanced Technologies of IHMGrant/Award Number:2023IHM01030。
文摘1|CURRENT UNDERSTANDING OF LNCRNAS Long non-coding RNAs(lncRNAs)are a class of regulatory RNA molecules that have captured the attention of researchers in recent years due to their diverse roles in development,physiological and pathological processes.
基金Supported by the National Natural Science Foundation of China(91434117,21776077)the Shanghai Rising-Star Program(17QA1401200)+1 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Open Project of State Key Laboratory of Chemical Engineering(SKL-Che-15C03).
文摘Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The unknown explosion limits of the multi-component feed gas mixture make it difficult to optimize the reaction process under safe operation conditions.In this work,a distribution method is proposed and verified to be effective by comparing estimated and experimental explosion limits of more than 200 kinds of flammable gas mixture.Then,it is employed to estimate the explosion limits of the feed gas mixture,some results of which are also validated by the classic Le Chatelier’s Rule and flammable resistance method.Based on the estimated explosion limits,process optimization is carried out using commercially high and inherently safe reactant concentrations to enhance reaction performance.The promising results are directly obtained through the interface called gOPT in gPROMS only by using a simple,easy-constructed and mature packed-bed reactor,such as the PO yield of 13.3%,PO selectivity of 85.1%and outlet PO fraction of 1.8%.These results can be rationalized by indepth analyses and discussion about the effects of the decision variables on the operation safety and reaction performance.The insights revealed here could shed new light on the process development of the PO production based on the estimation of the explosion limits of the multi-component feed gas mixture containing flammable gase s,inert gas and O2,followed by process optimization.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10675024, 11075063the National Fundamental Fund project Subsidy Funds of Personnel Training J0730311
文摘In the framework of the relativistic mean field theory (RMFT), the relativistic energy losses of the direct Urea processes with hyperons (Y-DURCA ) for reactions A → p + e + υe and ≡^-→ A+e+υe are studied in neutron stars. We calculate the energy gap of A hyperons and investigate the effects of the ^1S0 superfluidity (SF) of A hyperons on the Y-DURCA processes. The calculated results are in line with the recent experimental data △ BAA ~ 1.01 ±0.20-0.11^+0.18 MeV. The results indicate that the ^1S0 SF of A hyperons exists in most density ranges of happening the two reactions. The theoretical cooling curves are in agreement with observation data.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574362,61210014,and 11374340the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission under Grant No Z151100003515001
文摘The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.
文摘The main types of defect in the (Tb_(0.3)Dy_(0.7))Fe_(1.95) alloys with the 'one-step' directional solidification process were investigated. The effect of the dendrite, grain boundaries, twin boundaries, and REFe_3 precipitates on the magnetostrictive response of the (Tb_(0.3)Dy_(0.7))Fe_(1.95) alloys was analyzed respectively. The experiment results demonstrate that the dendrite, twin boundaries, and REFe_3 precipitates can be avoided by modifying alloying ingredient, solidification parameters and annealing technique. The dendritic growth front often leads to dendrite sheet, rare earth-rich phase, and twin boundaries. The lower proportion of rare earth, or slow solidification rate, results in the occurrence of REFe_3 precipitatates. It is vital for diminishing the defects to control the undercooling of solid-liquid interface at (2.4~5.1)×10~4 K·s·cm^(-2) so that the crystal grows in cellular growth front.
文摘A novel universal preprocessing method is proposed to estimate angles of arrival,which is applicable to one-or two-dimensional high resolution processing based on arbitrarycenter-symmetric arrays (such as uniform linear arrays, equal-spaced rectangular planar arraysand symmetric circular arrays). By mapping the complex signal space into the real one, the newmethod can effectively reduce the computation needed by the signal subspace direction findingtechniques without any performance degradation. In addition, the new preprocessing scheme itselfcan decorrelate the coherent signals received on the array. For regular array geometry such asuniform linear arrays and equal-spaced rectangular planar arrays, the popular spatial smoothingpreprocessing technique can be combined with the novel approach to improve the decorrelatingability. Simulation results confirm the above conclusions.
文摘Two problems for task schedules in a multiprocessor parallel system are discussed in Ans paper (1) given a partially ordered set of tasks represented by the venices of an acyclic directed graph with their corresponding processing bines, derive the lower bound on the Annimum time(LBMT) needed to process the task graph for a given number of processors. (2) Determine the lower bound on minimum number of processors(LBMP) needed to complete those tasks in minimum bine. It is shown that the proposed LBMT is sharper than previously Known values and the comPUtational aspeCts of these bounds are also discussed.
文摘Objective: To characterise a novel multifunctional pharmaceutical excipient and investigate its ef ect on paracetamol release from tablets prepared by direct compression.Methods: The excipient was prepared by co-processing gelatinized maize starch with sodium carboxymethyl cellulose and microcrystalline cellulose in a ratio of 2:1:1, dried and pulverized into powder. The excipient formulated was characterized using Fourier transform infrared spectroscopy and dif erential scanning calorimetry. The excipient was used to prepare batches of tablets by direct compression with drug-excipient ratios of 1:1, 1:2, 1:3 and 1:4. Parameters evaluated on tablets include crushing strength, friability and in vitro dissolution studies. Results: Differential scanning calorimetry analysis revealed a crystalline excipient while Fourier transform infrared spectroscopy showed no interaction between the excipient and paracetamol. Tablets from all the batches gave average crushing strength values between 3.47 and 4.88 kp. The 1:1 and 1:2 tablet batches were comparable to each other while 1:3 and 1:4 were also comparable to one another in their dissolution proi les. The dissolution parameters of the 1:4 batch was faster with- m∞(90.5%), t50%(3.5 min), t70%(11.6 min) while that of ratio 1:1 was the least with- m∞(48.6%), m5min(23.8%). Their release kinetics followed a KorsmeyerPeppas model with a super case-II transport mechanism.Conclusions: The drug-excipient ratios of 1:3 and 1:4 gave pharmaceutically acceptable tablets that met the British Pharmacopoeia specii cations. The t50% value of the 1:4 batch of tablets may i nd its usefulness in formulating drugs for which a fast onset of action is desired.
文摘On the basis of the unified calculation of the thermal shifts of R1 line, R2 line and ground-state-splitting transition probabilities of direct and Raman processes have theoretically been calculated. The thermal broadenings of R,The theoretically predicted transition probabilities are in good agreement with the experimental ones.PACS numbers: 71.70.Ch, 78.20.Nv, 63.20.Mt, 63.20.
基金the National Natural Science Foundation of China(Nos.51476072 and 51366002)the Science and Technology Foundation of Guizhou Province(No.[2018]1006)+1 种基金Supporting Program for Top Scientific and Technological Talents in Universities of Guizhou Province(No.[2018]062)High-level Talent Research Funding Project of Guizhou Institute of Technology and Key Construction Projects of the First Class University(Phase I)of Guizhou Province in 2017-the First Class Course(Nos.2017158418 and 2017158435).
文摘The use of ethanol is a promising method to reduce the emissions of diesel engines.The present study has been based on the installation of a gasoline electronic injection system in a single-cylinder diesel engine to control the amount of ethanol entering the cylinder during the compression(while diesel has been injected into the cylinder by the original pump injection system).The injection time has been controlled by crank angle signal collected by an AVL angle indicator.In the tests ethanol and diesel each accounted for half of the fuel volume,and the total heat energy supply of the fuel was equivalent to that of the diesel under the operating conditions of the original engine.A three-dimensional combustion model of the diesel engine has been implemented by using the CFD software FIRE.Simulations have been carried out assuming uniform and non-uniform injections rate for the different holes and the different results have been compared.According to these results,a non-uniform injection rate can produce early ignition and cause an increase in the maximum in-cylinder pressure and the maximum average incylinder temperature.Moreover,in such conditions NO emissions are larger while soot emission is slightly lower.