In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research resu...In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.展开更多
A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in th...A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft,whilst the convection is dominant in the area below 0.6 m for the particle heating.In order to accelerate the particle ignition,it is necessary to enhance the convection,thus to speed up the particle heating.A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace,aiming to create a lateral disturbance in the gaseous phase around the particles,so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient.Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners.The results show that with the high-speed jet technology,particles are heated up more rapidly and ignited much earlier,especially within the area of the radial range of R=0.3−0.6 m.As a result,a more efficient smelting process can be achieved under the same operational condition.展开更多
The copper flash smelting process neural network model(CFSPNNM)was developed,its input layer includes eight nodes:oxygen grade(OG),oxygen volume per ton of concentrate(OVPTC),flux rate(FR)and quantifies of Cu,S,Fe,SiO...The copper flash smelting process neural network model(CFSPNNM)was developed,its input layer includes eight nodes:oxygen grade(OG),oxygen volume per ton of concentrate(OVPTC),flux rate(FR)and quantifies of Cu,S,Fe,SiO_2 and MgO in copper concentrate;output layer includes three nodes:matte grade,matte temperature and Fe/SiO_2 in slag,and net structure was 8-13-10-3.Then,the internal relationship between the technological parameters and the objective parameters was built after the CFSPNNM was trained by us...展开更多
Due to the importance of detecting the matte grade in the copper flash smelting process, the mechanism model was established according to the multi-phase and multi-component mathematic model. Meanwhile this procedure ...Due to the importance of detecting the matte grade in the copper flash smelting process, the mechanism model was established according to the multi-phase and multi-component mathematic model. Meanwhile this procedure was a complicated production process with characteristics of large time delay, nonlinearity and so on. A fuzzy neural network model was set up through a great deal of production data. Besides a novel constrained gradient descent algorithm used to update the parameters was put forward to improve the parameters learning efficiency. Ultimately the self-adaptive combination technology was adopted to paralleled integrate two models in order to obtain the prediction model of the matte grade. Industrial data validation shows that the intelligently integrated model is more precise than a single model. It can not only predict the matte grade exactly but also provide optimal control of the copper flash smelting process with potent guidance.展开更多
A mathematical model has been presented to study the combustion of a single copper concentrate particle with high moisture content. By using the presented model, the effect of particle moisture content on particle tem...A mathematical model has been presented to study the combustion of a single copper concentrate particle with high moisture content. By using the presented model, the effect of particle moisture content on particle temperature, sulfur oxidation, and combustion heat generation has been evaluated. The mineralogical composition of the commonly used concentrate at Khatoonabad flash smelting furnace has been used in this study. It was found that the particle moisture content is removed in the sub-second time range and thus the moisture has marginal impact on the variation of particle temperature and on the reaction rate when the gas temperature is assumed to be constant in the reaction shaft. When a concentrate with high moisture content is charged, the particle size enlargement due to the agglomeration of concentrate particles causes an abrupt fall in the particle reaction rate.展开更多
The process parameters for bath autogenous smelting of copper were selected based on dynamic analysis of the experimental data and calculation of the mathematical model. Selecting the slag composition of SiO<sub>...The process parameters for bath autogenous smelting of copper were selected based on dynamic analysis of the experimental data and calculation of the mathematical model. Selecting the slag composition of SiO<sub>2</sub>/Fe=0.80 and CaO%=16. desulphur ratio less than 80 wt.-% in system. and the copper content of matte less than 60 wt.-%, it is able to limit Fe<sub>3</sub>O<sub>4</sub> formation and obtain a high desulphurization. The critical oxygen content of the blast increased with decrease of the sulphur content of the concentrate and increase of copper contents of the matte. If the copper contents of the concentrate are respectively of 30 and 35 wt.-%, the critical oxygen contents of the blast will be 48 and 69 wt.-% respectively. The smelling rate increases linearly with the blast intensity. When the sulphur content of the concentrate is 30 wt.-%, the oxygen content of the blast 70 vol.-% and the copper content of the matte 60 wt.-%, a blast intensityy of 700 Nm<sup>3</sup>/m<sup>2</sup>·h results in a smeling rate of 48.81 t/m<sup>2</sup>·d.展开更多
The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of c...The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates.Herein,the commercial powdery pyrite or anthracite is replaced with pyrite-anthracite pellets as the reductants to remove a large amount of Fe_(3)O_(4)particles in the molten slag,resulting in a deep fracture in the Fe_(3)O_(4)-wrapped copper microstructure and the full exposure of the copper matte cores.When 1wt%composite pellet is used as the reductant,the copper matte droplets are enlarged greatly from 25μm to a size observable by the naked eye,with the copper content being enriched remarkably from 1.2wt%to 4.5wt%.Density functional theory calculation results imply that the formation of the Fe_(3)O_(4)-wrapped copper structure is due to the preferential adhesion of Cu_(2)S on the Fe_(3)O_(4)particles.X-ray photoelectron spectroscopy,Fourier transform infrared spectrometer(FTIR),and Raman spectroscopy results all reveal that the high-efficiency conver-sion of Fe_(3)O_(4)to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure.As a consequence,the settling of copper matte droplets is enhanced due to the lowered slag viscosity,contributing to the high efficiency of copper-slag separation for copper recovery.The results provide new insights into the enhanced in-situ enrichment of copper from mol-ten slag.展开更多
A numerical simulation analysis for reactions of chalcopyrite and pyriteparticles coupled with momentum, heat and mass transfer between the particle and gas in a flashsmelting furnace is presented. In the simulation, ...A numerical simulation analysis for reactions of chalcopyrite and pyriteparticles coupled with momentum, heat and mass transfer between the particle and gas in a flashsmelting furnace is presented. In the simulation, the equations governing the gas flow are solvednumerically by Eular method. The particle phase is introduced into the gas flow by theparti-cle-source-in-cell technique (PSIC). Predictions including the fluid flow field, temperaturefield, concentration field of gas phase and the tracks of particles have been obtained by thenumerical simulation. The visualized results show that the reaction of sulfide particles is almostcompleted in the upper zone of the shaft within 1.5 m far from the central jet distributor (CJD)type concentrate burner. The simulation results are in good agreement with data obtained from aseries of experiments and tests in the plant and the error is less than 2%.展开更多
A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.T...A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.The calculated results of the model show that,under the given stable production condition,the contents of Cu,Fe and S in matte are71.08%,7.15%and17.51%,and the contents of Fe,SiO2and Cu in slag are42.17%,25.05%and3.16%.The calculated fractional distributions of minor elements among gas,slag and matte phases are As82.69%,11.22%,6.09%,Sb16.57%,70.63%,12.80%,Bi68.93%,11.30%,19.77%,Pb19.70%,24.75%,55.55%and Zn17.94%,64.28%,17.79%,respectively.The calculated results of the multiphase equilibrium model agree well with the actual industrial production data,indicating that the credibility of the model is validated.Therefore,the model could be used to monitor and optimize the industrial operations of SKS process.展开更多
Fluid flow, heat transfer and combustion in Jinlong CJD concentrate burnerflash smelting furnace have been investigated by numerical modeling and flow visualization. Themodeling is based on the Eulerian approach for t...Fluid flow, heat transfer and combustion in Jinlong CJD concentrate burnerflash smelting furnace have been investigated by numerical modeling and flow visualization. Themodeling is based on the Eulerian approach for the gas flow equations and the Lagrangian approachfor the particles. Interaction between the gas phase and particle phase, such as frictional forces,heat and mass transfer, are included by the addition of sources and sinks. The modeling resultsincluding the fluid flow field, temperature field, concentration field of gas phase and thetrajectories of particles have been obtained. The predicted results are in good agreement with thedata obtained from a series of experiments and tests in the Jinlong Copper Smelter and thetemperature error is less than 20 K.展开更多
An experimental model of maldistribution was established and grey correlation analysis method was employed to describe quantitatively the maldistribution phenomenon in the feeding device of copper flash smelting.Parti...An experimental model of maldistribution was established and grey correlation analysis method was employed to describe quantitatively the maldistribution phenomenon in the feeding device of copper flash smelting.Particle motion in the feeding device was separated into uniform flow in chute and restricted slanting parabolic motion in distributor channel.Factors affecting particle velocity at the chute outlet and particle moving distance in the distributor channel,which also cause the maldistribution,were analyzed based on the assumption of pseudo fluid.Experiments were conducted to study the maldistribution using river sand.The results indicate obvious mass maldistribution and an even higher degree with the increase of feeding mass rate;meanwhile,size maldistribution is negligible.Also,feeding intensity has a larger impact on circumferential maldistribution than on radial maldistribution.Based on the experimental results of the eight factors impacting the maldistribution,grey relation of each factor was calculated using grey correlation analysis.The importances of these factors were sequenced.The results show that a proper adjustment of the structure will ameliorate the maldistribution phenomenon in the feeding device of copper flash smelting.展开更多
The software that simulates the flow, temperature, concentration and the heat generation field in the Outkumpu flash smelting furnace, was developed by a numerical method of the particle-gas flow together with some ch...The software that simulates the flow, temperature, concentration and the heat generation field in the Outkumpu flash smelting furnace, was developed by a numerical method of the particle-gas flow together with some chemical reaction models. Many typical operating conditions were chosen for simulation in order to obtain the effect of the distribution air, process air, central oxygen and the oil-burner position etc. The concepts about optimum operation, 3C(concentration of high temperature, high oxygen and laden concentrate particles), are concluded from these simulated results, which have been checked primarily by operational experiments.展开更多
The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterpris...The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterprises. However, due to the complexity of the system, it is quite difficult to perform a timely comprehensive analysis of the energy consumption of the whole production system. Aiming to realize an online assessment of the energy consumption of the system, great effort was first made in Jinguan Copper, Tongling Nonferrous Metals Group Co. Ltd. Methods were proposed to solve technical difficulties such as the acquisition and processing of data with different sampling frequencies, the online evaluation of the electricity consumption, and timely evaluation of product output in the periodic process. As a result, a software system was developed to make the online analysis of the energy consumption and efficiency from the three levels ranging from the system to the equipment. The analytical results at the system level was introduce. It’s found that electricity is the most consumed energy in the system, accounting for 77.3% of the total energy consumption. The smelting unit has the highest energy consumption, accounting for 52.8% of the total energy consumed in the whole enterprise.展开更多
According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelti...According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.展开更多
A mathematical model of multistage and multiphase reactions in flash smelting furnace, which based on the description of chemical reactions and reaction rate, is presented. In this model, main components of copper con...A mathematical model of multistage and multiphase reactions in flash smelting furnace, which based on the description of chemical reactions and reaction rate, is presented. In this model, main components of copper concentrate are represented as FeS 2 and CuFeS based on experiment, intermediate products are assumed to be S 2 and FeS, and the final products are assumed as FeS, FeO, SO 2, Cu 2S, FeO and FeO(SiO 2) 2. The model incorporates the transport of momentum, heat and mass, reaction kinetics between gas and particles, and reactions between gas and gas. The k-ε model is used to describe gas phase turbulence. The model uses the Eulerian approach for the gas flow equations and the Lagrangian approach for the particles. The coupling of gas and particle equations is performed through the particle source in cell(PSIC) method. Comparison between the model predictions and the plant measurements shows that the model has high reliability and accuracy.展开更多
The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing t...The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing the smeltingcharacteristics deeply.In our model,the furnace section from top to bottom is divided into seven functional layers,i.e.,gas layer,mineral decomposition transitioning layer,slag layer,slag formation transitioning layer,matte formation transitioning layer,weakoxidizing layer and strong oxidizing layer.The furnace along the length direction is divided into three functional regions,that is,reaction region,separation transitioning region and liquid phase separation and settling region.These layers or regions play differentroles in the model in describing the mechanism of the smelting process.The SKS smelting is at a multiphase non-steady equilibriumstate,and the oxygen and sulfur potentials change gradually in the length and cross directions.The smelting capacity of the SKSprocess could be raised through reasonably controlling the potential values in different layers and regions.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51620105013)Dongying Fangyuan Nonferrous Metals Co., Ltd.
文摘In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.
基金funded by Jinguan Copper of Tongling Non-ferrous Metals Group Co., Ltd.
文摘A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft,whilst the convection is dominant in the area below 0.6 m for the particle heating.In order to accelerate the particle ignition,it is necessary to enhance the convection,thus to speed up the particle heating.A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace,aiming to create a lateral disturbance in the gaseous phase around the particles,so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient.Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners.The results show that with the high-speed jet technology,particles are heated up more rapidly and ignited much earlier,especially within the area of the radial range of R=0.3−0.6 m.As a result,a more efficient smelting process can be achieved under the same operational condition.
基金Key Industrial Technology Development Project of China (No.20051255)National Natural Science Foundation of China (No.50364004)+1 种基金Scientific and Technological Project of Jiangxi Province (No.20061B0101100)Natural Science Foundation of Jiangxi Province (No.2007GZC0713)
文摘The copper flash smelting process neural network model(CFSPNNM)was developed,its input layer includes eight nodes:oxygen grade(OG),oxygen volume per ton of concentrate(OVPTC),flux rate(FR)and quantifies of Cu,S,Fe,SiO_2 and MgO in copper concentrate;output layer includes three nodes:matte grade,matte temperature and Fe/SiO_2 in slag,and net structure was 8-13-10-3.Then,the internal relationship between the technological parameters and the objective parameters was built after the CFSPNNM was trained by us...
基金Project(60634020) supported by the National Natural Science Foundation of ChinaProject(2002CB312200) supported by the National Basic Research and Development Program of China
文摘Due to the importance of detecting the matte grade in the copper flash smelting process, the mechanism model was established according to the multi-phase and multi-component mathematic model. Meanwhile this procedure was a complicated production process with characteristics of large time delay, nonlinearity and so on. A fuzzy neural network model was set up through a great deal of production data. Besides a novel constrained gradient descent algorithm used to update the parameters was put forward to improve the parameters learning efficiency. Ultimately the self-adaptive combination technology was adopted to paralleled integrate two models in order to obtain the prediction model of the matte grade. Industrial data validation shows that the intelligently integrated model is more precise than a single model. It can not only predict the matte grade exactly but also provide optimal control of the copper flash smelting process with potent guidance.
文摘A mathematical model has been presented to study the combustion of a single copper concentrate particle with high moisture content. By using the presented model, the effect of particle moisture content on particle temperature, sulfur oxidation, and combustion heat generation has been evaluated. The mineralogical composition of the commonly used concentrate at Khatoonabad flash smelting furnace has been used in this study. It was found that the particle moisture content is removed in the sub-second time range and thus the moisture has marginal impact on the variation of particle temperature and on the reaction rate when the gas temperature is assumed to be constant in the reaction shaft. When a concentrate with high moisture content is charged, the particle size enlargement due to the agglomeration of concentrate particles causes an abrupt fall in the particle reaction rate.
文摘The process parameters for bath autogenous smelting of copper were selected based on dynamic analysis of the experimental data and calculation of the mathematical model. Selecting the slag composition of SiO<sub>2</sub>/Fe=0.80 and CaO%=16. desulphur ratio less than 80 wt.-% in system. and the copper content of matte less than 60 wt.-%, it is able to limit Fe<sub>3</sub>O<sub>4</sub> formation and obtain a high desulphurization. The critical oxygen content of the blast increased with decrease of the sulphur content of the concentrate and increase of copper contents of the matte. If the copper contents of the concentrate are respectively of 30 and 35 wt.-%, the critical oxygen contents of the blast will be 48 and 69 wt.-% respectively. The smelling rate increases linearly with the blast intensity. When the sulphur content of the concentrate is 30 wt.-%, the oxygen content of the blast 70 vol.-% and the copper content of the matte 60 wt.-%, a blast intensityy of 700 Nm<sup>3</sup>/m<sup>2</sup>·h results in a smeling rate of 48.81 t/m<sup>2</sup>·d.
基金supported by the National Natural Science Foundation of China(No.52274349)the National Key Basic Research and Development Program of China(No.2022YFC3900801)+1 种基金the Fujian Province University-Industry Cooperation Research Program,China(No.2023H6007)the Fujian Province Natural Science Foundation,China(No.2023J05024).
文摘The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates.Herein,the commercial powdery pyrite or anthracite is replaced with pyrite-anthracite pellets as the reductants to remove a large amount of Fe_(3)O_(4)particles in the molten slag,resulting in a deep fracture in the Fe_(3)O_(4)-wrapped copper microstructure and the full exposure of the copper matte cores.When 1wt%composite pellet is used as the reductant,the copper matte droplets are enlarged greatly from 25μm to a size observable by the naked eye,with the copper content being enriched remarkably from 1.2wt%to 4.5wt%.Density functional theory calculation results imply that the formation of the Fe_(3)O_(4)-wrapped copper structure is due to the preferential adhesion of Cu_(2)S on the Fe_(3)O_(4)particles.X-ray photoelectron spectroscopy,Fourier transform infrared spectrometer(FTIR),and Raman spectroscopy results all reveal that the high-efficiency conver-sion of Fe_(3)O_(4)to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure.As a consequence,the settling of copper matte droplets is enhanced due to the lowered slag viscosity,contributing to the high efficiency of copper-slag separation for copper recovery.The results provide new insights into the enhanced in-situ enrichment of copper from mol-ten slag.
文摘A numerical simulation analysis for reactions of chalcopyrite and pyriteparticles coupled with momentum, heat and mass transfer between the particle and gas in a flashsmelting furnace is presented. In the simulation, the equations governing the gas flow are solvednumerically by Eular method. The particle phase is introduced into the gas flow by theparti-cle-source-in-cell technique (PSIC). Predictions including the fluid flow field, temperaturefield, concentration field of gas phase and the tracks of particles have been obtained by thenumerical simulation. The visualized results show that the reaction of sulfide particles is almostcompleted in the upper zone of the shaft within 1.5 m far from the central jet distributor (CJD)type concentrate burner. The simulation results are in good agreement with data obtained from aseries of experiments and tests in the plant and the error is less than 2%.
基金Project(51620105013)supported by the National Natural Science Foundation of China
文摘A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.The calculated results of the model show that,under the given stable production condition,the contents of Cu,Fe and S in matte are71.08%,7.15%and17.51%,and the contents of Fe,SiO2and Cu in slag are42.17%,25.05%and3.16%.The calculated fractional distributions of minor elements among gas,slag and matte phases are As82.69%,11.22%,6.09%,Sb16.57%,70.63%,12.80%,Bi68.93%,11.30%,19.77%,Pb19.70%,24.75%,55.55%and Zn17.94%,64.28%,17.79%,respectively.The calculated results of the multiphase equilibrium model agree well with the actual industrial production data,indicating that the credibility of the model is validated.Therefore,the model could be used to monitor and optimize the industrial operations of SKS process.
文摘Fluid flow, heat transfer and combustion in Jinlong CJD concentrate burnerflash smelting furnace have been investigated by numerical modeling and flow visualization. Themodeling is based on the Eulerian approach for the gas flow equations and the Lagrangian approachfor the particles. Interaction between the gas phase and particle phase, such as frictional forces,heat and mass transfer, are included by the addition of sources and sinks. The modeling resultsincluding the fluid flow field, temperature field, concentration field of gas phase and thetrajectories of particles have been obtained. The predicted results are in good agreement with thedata obtained from a series of experiments and tests in the Jinlong Copper Smelter and thetemperature error is less than 20 K.
基金Project(2010AA065201) supported by the National High Technology Research and Development Program of China
文摘An experimental model of maldistribution was established and grey correlation analysis method was employed to describe quantitatively the maldistribution phenomenon in the feeding device of copper flash smelting.Particle motion in the feeding device was separated into uniform flow in chute and restricted slanting parabolic motion in distributor channel.Factors affecting particle velocity at the chute outlet and particle moving distance in the distributor channel,which also cause the maldistribution,were analyzed based on the assumption of pseudo fluid.Experiments were conducted to study the maldistribution using river sand.The results indicate obvious mass maldistribution and an even higher degree with the increase of feeding mass rate;meanwhile,size maldistribution is negligible.Also,feeding intensity has a larger impact on circumferential maldistribution than on radial maldistribution.Based on the experimental results of the eight factors impacting the maldistribution,grey relation of each factor was calculated using grey correlation analysis.The importances of these factors were sequenced.The results show that a proper adjustment of the structure will ameliorate the maldistribution phenomenon in the feeding device of copper flash smelting.
文摘The software that simulates the flow, temperature, concentration and the heat generation field in the Outkumpu flash smelting furnace, was developed by a numerical method of the particle-gas flow together with some chemical reaction models. Many typical operating conditions were chosen for simulation in order to obtain the effect of the distribution air, process air, central oxygen and the oil-burner position etc. The concepts about optimum operation, 3C(concentration of high temperature, high oxygen and laden concentrate particles), are concluded from these simulated results, which have been checked primarily by operational experiments.
基金Project(1301021018) supported by Science and Technology Research Project of Anhui Province,China
文摘The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterprises. However, due to the complexity of the system, it is quite difficult to perform a timely comprehensive analysis of the energy consumption of the whole production system. Aiming to realize an online assessment of the energy consumption of the system, great effort was first made in Jinguan Copper, Tongling Nonferrous Metals Group Co. Ltd. Methods were proposed to solve technical difficulties such as the acquisition and processing of data with different sampling frequencies, the online evaluation of the electricity consumption, and timely evaluation of product output in the periodic process. As a result, a software system was developed to make the online analysis of the energy consumption and efficiency from the three levels ranging from the system to the equipment. The analytical results at the system level was introduce. It’s found that electricity is the most consumed energy in the system, accounting for 77.3% of the total energy consumption. The smelting unit has the highest energy consumption, accounting for 52.8% of the total energy consumed in the whole enterprise.
基金Project (50904027) supported by the National Natural Science Foundation of ChinaProject (2013BAB03B05) supported by the National Key Technology R&D Program of China+1 种基金Project (20133BCB23018) supported by the Foundation for Young Scientist(Jinggang Star)of Jiangxi Province,ChinaProject (2012ZBAB206002) supported by the Natural Science Foundation of Jiangxi Province,China
文摘According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.
文摘A mathematical model of multistage and multiphase reactions in flash smelting furnace, which based on the description of chemical reactions and reaction rate, is presented. In this model, main components of copper concentrate are represented as FeS 2 and CuFeS based on experiment, intermediate products are assumed to be S 2 and FeS, and the final products are assumed as FeS, FeO, SO 2, Cu 2S, FeO and FeO(SiO 2) 2. The model incorporates the transport of momentum, heat and mass, reaction kinetics between gas and particles, and reactions between gas and gas. The k-ε model is used to describe gas phase turbulence. The model uses the Eulerian approach for the gas flow equations and the Lagrangian approach for the particles. The coupling of gas and particle equations is performed through the particle source in cell(PSIC) method. Comparison between the model predictions and the plant measurements shows that the model has high reliability and accuracy.
基金Project(51620105013)supported by the National Natural Science Foundation of China
文摘The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing the smeltingcharacteristics deeply.In our model,the furnace section from top to bottom is divided into seven functional layers,i.e.,gas layer,mineral decomposition transitioning layer,slag layer,slag formation transitioning layer,matte formation transitioning layer,weakoxidizing layer and strong oxidizing layer.The furnace along the length direction is divided into three functional regions,that is,reaction region,separation transitioning region and liquid phase separation and settling region.These layers or regions play differentroles in the model in describing the mechanism of the smelting process.The SKS smelting is at a multiphase non-steady equilibriumstate,and the oxygen and sulfur potentials change gradually in the length and cross directions.The smelting capacity of the SKSprocess could be raised through reasonably controlling the potential values in different layers and regions.