Estimation of the bivariate survival function under the competing risks caseis considered.We give an explicit formula for the estimator from a decomposition of thebivariate survival function based on competing risks,w...Estimation of the bivariate survival function under the competing risks caseis considered.We give an explicit formula for the estimator from a decomposition of thebivariate survival function based on competing risks,which is almost sure consistent.展开更多
Background: Bivariate count data are commonly encountered in medicine, biology, engineering, epidemiology and many other applications. The Poisson distribution has been the model of choice to analyze such data. In mos...Background: Bivariate count data are commonly encountered in medicine, biology, engineering, epidemiology and many other applications. The Poisson distribution has been the model of choice to analyze such data. In most cases mutual independence among the variables is assumed, however this fails to take into accounts the correlation between the outcomes of interests. A special bivariate form of the multivariate Lagrange family of distribution, names Generalized Bivariate Poisson Distribution, is considered in this paper. Objectives: We estimate the model parameters using the method of maximum likelihood and show that the model fits the count variables representing components of metabolic syndrome in spousal pairs. We use the likelihood local score to test the significance of the correlation between the counts. We also construct confidence interval on the ratio of the two correlated Poisson means. Methods: Based on a random sample of pairs of count data, we show that the score test of independence is locally most powerful. We also provide a formula for sample size estimation for given level of significance and given power. The confidence intervals on the ratio of correlated Poisson means are constructed using the delta method, the Fieller’s theorem, and the nonparametric bootstrap. We illustrate the methodologies on metabolic syndrome data collected from 4000 spousal pairs. Results: The bivariate Poisson model fitted the metabolic syndrome data quite satisfactorily. Moreover, the three methods of confidence interval estimation were almost identical, meaning that they have the same interval width.展开更多
In this paper, the following contaminated linear model is considered:y i=(1-ε)x τ iβ+z i, 1≤i≤n,where r.v.'s { y i } are contaminated with errors { z i }. To assume that the errors have the fin...In this paper, the following contaminated linear model is considered:y i=(1-ε)x τ iβ+z i, 1≤i≤n,where r.v.'s { y i } are contaminated with errors { z i }. To assume that the errors have the finite moment of order 2 only. The non parametric estimation of contaminated coefficient ε and regression parameter β are established, and the strong consistency and convergence rate almost surely of the estimators are obtained. A simulated example is also given to show the visual performance of the estimations.展开更多
Based on the analysis of impulse response properties, a scattering model of ultra wideband (UWB) radar targets is developed to estimate the target parameters exactly. With this model, two algorithms of multiple sign...Based on the analysis of impulse response properties, a scattering model of ultra wideband (UWB) radar targets is developed to estimate the target parameters exactly. With this model, two algorithms of multiple signal classification (MUSIC), and matrix pencil (MP), are introduced to calculate the scattering center parameters of targets and their performances are compared. The simulation experiments show that there are no differences in the estimation precision of MUSIC and MP methods when the signal-to-noise ratio (SNR) is larger than 13 dB. However, the MP method has a better performance than that of MUSIC method when the SNR is smaller than 13 dB. Besides, the time consuming of MP method is less than that of MUSIC method. Therefore, the MP algorithm is preferred for the parametric estimation of UWB radar targets.展开更多
In this paper, we use Monte Carlo simulations to compare parametric estimators of Type 1 Tobit model. In particular, we examine the performance for finite samples of three different estimators of simple Tobit model: t...In this paper, we use Monte Carlo simulations to compare parametric estimators of Type 1 Tobit model. In particular, we examine the performance for finite samples of three different estimators of simple Tobit model: the least squares (LS) estimator, the Heckman (H) estimator and the maximum likelihood (ML) estimator. These three estimators are consistent and asymptotically normal in the case where the density error is specified. However, these properties are sensitive to the situation where the error distribution is not specified. The purpose of this article is to determine properties of the three estimators, namely bias and convergence, by using Monte Carlo simulations.展开更多
Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to pre...Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to prevent underestimate of the standard errors of the parameter estimators but do not include random effects. In this study, we developed a mixed-effect parametric proportional hazard (MEPPH) model with a generalized log-logistic distribution baseline. The parameters of the model were estimated by the application of the maximum likelihood estimation technique with an iterative optimization procedure (quasi-Newton Raphson). The developed MEPPH model’s performance was evaluated using Monte Carlo simulation. The Leukemia dataset with right-censored data was used to demonstrate the model’s applicability. The results revealed that all covariates, except age in PH models, were significant in all considered distributions. Age and Townsend score were significant when the GLL distribution was used in MEPPH, while sex, age and Townsend score were significant in MEPPH model when other distributions were used. Based on information criteria values, the Generalized Log-Logistic Mixed-Effects Parametric Proportional Hazard model (GLL-MEPPH) outperformed other models.展开更多
An adaptive actuator failure compensation control scheme is developed using an indirect adaptive control method,by calculating the controller parameters from adaptive estimates of system parameters and actuator failur...An adaptive actuator failure compensation control scheme is developed using an indirect adaptive control method,by calculating the controller parameters from adaptive estimates of system parameters and actuator failure parameters.A key technical issue is how to deal with the actuator failure uncertainties such as failure pattern,time and values.A complete parametrization covering all possible failures is used to solve this issue for adaptive parameter estimation.A simultaneous mapping from the estimated system/failure parameters to the controller parameters is employed to make the control system capable of ensuring the desired system performance under failures,which is verified by simulation results.展开更多
A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) p...A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) performance using optimal training pilots is also given, which proves the method can improve the estimation precision greatly in sparse channel.. Since such method needs the multi-path time delays information of the channel, the probabilistic data association (PDA) method is employed to estimate the time delay of each path. Simulation results show that both the bit error rate (BER) and the MSE performance of the proposed method are better than the traditional LS channel estimation method.展开更多
We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (D...We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels. WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since their optimality was established in the context of asymptotic theory. We developed parametric bootstrap versions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods under small sample cases on the assumption that variances of the individual effects and the disturbances are of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples.展开更多
The software cost estimation aims to predict the most realistic effort that is required to finish a software project and so it is critical to the success of a software project management. A Software Cost Estimation af...The software cost estimation aims to predict the most realistic effort that is required to finish a software project and so it is critical to the success of a software project management. A Software Cost Estimation affects nearly all management activities, including project bidding, resource allocation and project planning. It is affected by a number of factors, such as implementation efficiency, as well as how much the various reviews and studies completed prior to the software development stage cost. Accurate cost estimation will help us to complete the project on time and within budget. Accurate estimation is important because it has led to extensive research into the methods of software cost estimation. Some important software cost estimation methods have been studied in this research work. In addition, we have set out own criteria, which has been used to compare all the different selected methods. We have also given a score for each evaluation criteria, so that we can compare the different methods numerically for cost estimation. Our observations have shown that it is best to use a number of different estimating techniques or cost models, and then compare the results before determining the reasons for any of the large variations. None of the methods are necessarily better or worse than the others. We found, in fact, that their strengths and weaknesses often complement each other. Therefore, the main conclusion is that there is no one single technique that is best for every situation, and the results of a number of different approaches need to be carefully considered to discover what is the most likely to produce estimates that are realistic.展开更多
A Bayesian estimator with informative prior distributions (a multi-normal and an inverted gamma distribution), adequate to displacement estimation at dam displacement monitoring networks, is presented. The hyper-par...A Bayesian estimator with informative prior distributions (a multi-normal and an inverted gamma distribution), adequate to displacement estimation at dam displacement monitoring networks, is presented. The hyper-parameters of the prior distributions are obtained by Bayesian empirical methods with non-informative meta-priors. The performances of the Bayes estimator and the classical generalized lest squares estimator are compared using two measurements of the horizontal monitoring network of a concrete gravity dam: the Penha Garcia dam (Portugal). In order to test the robustness of the two estimators, a gross error is added to one of the measured horizontal directions: the Bayes estimator proves to be significantly more robust than the classic maximum likelihood estimator.展开更多
A cost estimate is one of the most important steps in road project management. There are ranges of factors that mostly affect the final project cost. Many approaches were used to estimate project cost, which took into...A cost estimate is one of the most important steps in road project management. There are ranges of factors that mostly affect the final project cost. Many approaches were used to estimate project cost, which took into consideration probable project performance and risks. The aim is to improve the ability of construction managers to predict a parametric cost estimate for road projects using SVM (support vector machine). The work is based on collecting historical road executed cases. The 12 factors were identified to be the most important factors affecting the cost-estimating model. A total of 70 case studies from historical data were divided randomly into three sets: training set includes 60 cases, cross validation set includes three cases and testing set includes seven cases. The built model was successfully able to predict project cost to the AP (accuracy performance) of 95%.展开更多
文摘Estimation of the bivariate survival function under the competing risks caseis considered.We give an explicit formula for the estimator from a decomposition of thebivariate survival function based on competing risks,which is almost sure consistent.
文摘Background: Bivariate count data are commonly encountered in medicine, biology, engineering, epidemiology and many other applications. The Poisson distribution has been the model of choice to analyze such data. In most cases mutual independence among the variables is assumed, however this fails to take into accounts the correlation between the outcomes of interests. A special bivariate form of the multivariate Lagrange family of distribution, names Generalized Bivariate Poisson Distribution, is considered in this paper. Objectives: We estimate the model parameters using the method of maximum likelihood and show that the model fits the count variables representing components of metabolic syndrome in spousal pairs. We use the likelihood local score to test the significance of the correlation between the counts. We also construct confidence interval on the ratio of the two correlated Poisson means. Methods: Based on a random sample of pairs of count data, we show that the score test of independence is locally most powerful. We also provide a formula for sample size estimation for given level of significance and given power. The confidence intervals on the ratio of correlated Poisson means are constructed using the delta method, the Fieller’s theorem, and the nonparametric bootstrap. We illustrate the methodologies on metabolic syndrome data collected from 4000 spousal pairs. Results: The bivariate Poisson model fitted the metabolic syndrome data quite satisfactorily. Moreover, the three methods of confidence interval estimation were almost identical, meaning that they have the same interval width.
文摘In this paper, the following contaminated linear model is considered:y i=(1-ε)x τ iβ+z i, 1≤i≤n,where r.v.'s { y i } are contaminated with errors { z i }. To assume that the errors have the finite moment of order 2 only. The non parametric estimation of contaminated coefficient ε and regression parameter β are established, and the strong consistency and convergence rate almost surely of the estimators are obtained. A simulated example is also given to show the visual performance of the estimations.
基金supported by the Aerospace Science and Technology Foundation of China(2007CH080004).
文摘Based on the analysis of impulse response properties, a scattering model of ultra wideband (UWB) radar targets is developed to estimate the target parameters exactly. With this model, two algorithms of multiple signal classification (MUSIC), and matrix pencil (MP), are introduced to calculate the scattering center parameters of targets and their performances are compared. The simulation experiments show that there are no differences in the estimation precision of MUSIC and MP methods when the signal-to-noise ratio (SNR) is larger than 13 dB. However, the MP method has a better performance than that of MUSIC method when the SNR is smaller than 13 dB. Besides, the time consuming of MP method is less than that of MUSIC method. Therefore, the MP algorithm is preferred for the parametric estimation of UWB radar targets.
文摘In this paper, we use Monte Carlo simulations to compare parametric estimators of Type 1 Tobit model. In particular, we examine the performance for finite samples of three different estimators of simple Tobit model: the least squares (LS) estimator, the Heckman (H) estimator and the maximum likelihood (ML) estimator. These three estimators are consistent and asymptotically normal in the case where the density error is specified. However, these properties are sensitive to the situation where the error distribution is not specified. The purpose of this article is to determine properties of the three estimators, namely bias and convergence, by using Monte Carlo simulations.
文摘Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to prevent underestimate of the standard errors of the parameter estimators but do not include random effects. In this study, we developed a mixed-effect parametric proportional hazard (MEPPH) model with a generalized log-logistic distribution baseline. The parameters of the model were estimated by the application of the maximum likelihood estimation technique with an iterative optimization procedure (quasi-Newton Raphson). The developed MEPPH model’s performance was evaluated using Monte Carlo simulation. The Leukemia dataset with right-censored data was used to demonstrate the model’s applicability. The results revealed that all covariates, except age in PH models, were significant in all considered distributions. Age and Townsend score were significant when the GLL distribution was used in MEPPH, while sex, age and Townsend score were significant in MEPPH model when other distributions were used. Based on information criteria values, the Generalized Log-Logistic Mixed-Effects Parametric Proportional Hazard model (GLL-MEPPH) outperformed other models.
基金supported by the US National Science Foundation (ECS0601475)the National Natural Science Foundation of China (60904042)
文摘An adaptive actuator failure compensation control scheme is developed using an indirect adaptive control method,by calculating the controller parameters from adaptive estimates of system parameters and actuator failure parameters.A key technical issue is how to deal with the actuator failure uncertainties such as failure pattern,time and values.A complete parametrization covering all possible failures is used to solve this issue for adaptive parameter estimation.A simultaneous mapping from the estimated system/failure parameters to the controller parameters is employed to make the control system capable of ensuring the desired system performance under failures,which is verified by simulation results.
文摘A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) performance using optimal training pilots is also given, which proves the method can improve the estimation precision greatly in sparse channel.. Since such method needs the multi-path time delays information of the channel, the probabilistic data association (PDA) method is employed to estimate the time delay of each path. Simulation results show that both the bit error rate (BER) and the MSE performance of the proposed method are better than the traditional LS channel estimation method.
文摘We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels. WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since their optimality was established in the context of asymptotic theory. We developed parametric bootstrap versions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods under small sample cases on the assumption that variances of the individual effects and the disturbances are of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples.
文摘The software cost estimation aims to predict the most realistic effort that is required to finish a software project and so it is critical to the success of a software project management. A Software Cost Estimation affects nearly all management activities, including project bidding, resource allocation and project planning. It is affected by a number of factors, such as implementation efficiency, as well as how much the various reviews and studies completed prior to the software development stage cost. Accurate cost estimation will help us to complete the project on time and within budget. Accurate estimation is important because it has led to extensive research into the methods of software cost estimation. Some important software cost estimation methods have been studied in this research work. In addition, we have set out own criteria, which has been used to compare all the different selected methods. We have also given a score for each evaluation criteria, so that we can compare the different methods numerically for cost estimation. Our observations have shown that it is best to use a number of different estimating techniques or cost models, and then compare the results before determining the reasons for any of the large variations. None of the methods are necessarily better or worse than the others. We found, in fact, that their strengths and weaknesses often complement each other. Therefore, the main conclusion is that there is no one single technique that is best for every situation, and the results of a number of different approaches need to be carefully considered to discover what is the most likely to produce estimates that are realistic.
文摘A Bayesian estimator with informative prior distributions (a multi-normal and an inverted gamma distribution), adequate to displacement estimation at dam displacement monitoring networks, is presented. The hyper-parameters of the prior distributions are obtained by Bayesian empirical methods with non-informative meta-priors. The performances of the Bayes estimator and the classical generalized lest squares estimator are compared using two measurements of the horizontal monitoring network of a concrete gravity dam: the Penha Garcia dam (Portugal). In order to test the robustness of the two estimators, a gross error is added to one of the measured horizontal directions: the Bayes estimator proves to be significantly more robust than the classic maximum likelihood estimator.
文摘A cost estimate is one of the most important steps in road project management. There are ranges of factors that mostly affect the final project cost. Many approaches were used to estimate project cost, which took into consideration probable project performance and risks. The aim is to improve the ability of construction managers to predict a parametric cost estimate for road projects using SVM (support vector machine). The work is based on collecting historical road executed cases. The 12 factors were identified to be the most important factors affecting the cost-estimating model. A total of 70 case studies from historical data were divided randomly into three sets: training set includes 60 cases, cross validation set includes three cases and testing set includes seven cases. The built model was successfully able to predict project cost to the AP (accuracy performance) of 95%.