For cirrhotic refractory ascites,diuretics combined with albumin and vasoactive drugs are the first-line choice for ascites management.However,their therapeutic effects are limited,and most refractory ascites do not r...For cirrhotic refractory ascites,diuretics combined with albumin and vasoactive drugs are the first-line choice for ascites management.However,their therapeutic effects are limited,and most refractory ascites do not respond to medication treat-ment,necessitating consideration of drainage or surgical interventions.Con-sequently,numerous drainage methods for cirrhotic ascites have emerged,including large-volume paracentesis,transjugular intrahepatic portosystemic shunt,peritoneovenous shunt,automated low-flow ascites pump,cell-free and concentrated ascites reinfusion therapy,and peritoneal catheter drainage.This review introduces the advantages and disadvantages of these methods in different aspects,as well as indications and contraindications for this disease.展开更多
Regular valveless piezoelectric pumps have rectifying elements outside their chambers to produce net flow. These rectifying elements outside the chamber will increase the overall volume of the pump and prevent its min...Regular valveless piezoelectric pumps have rectifying elements outside their chambers to produce net flow. These rectifying elements outside the chamber will increase the overall volume of the pump and prevent its minimization. Valveless piezoelectric pump with unsymmetrical slopes elements(USE), proposed in this paper, differs from other valveless pumps in that it is easy to be minimized by developing the chamber bottom as such a rectifying element. In this research, the working principle of the proposed pump was analyzed first. Numerical models were thereby established and numerical simulation was conducted to the chamber flow field with the method of time-dependent velocity. The effects of the USEs on the flow field in the chamber were shown clearly in simulation. And the particular feature of flow field in the chamber was discovered. It behaves a complex flow field, in which strong turbulent occurs companying a lot of vortexes in different directions and different sizes. This feature is just opposite to what regular piezoelectric pumps expect: a moderate flow field. The turbulent flow could be used to have different liquids stirred and well mixed in the chamber to produce homogeneous solution, emulsion or turbid liquid. Meanwhile, numerical simulation also presents the effect of the angles difference of the two slopes upon the flow field, and upon the flow rate of the pump, which fits to the theoretical analysis. Experiments with the proposed pump were also conducted to verify the numerical results. In these experiments, six USEs with different slope angles were used for efficiency tests, which proved the validity and reliability of the numerical analysis. The data obtained from numerical analysis agree well with that from the experiments. The errors ranged from 4.4% to 14.8% with their weighted average error being 9.7%.展开更多
Typically,liquid pump and liquids mixer are two separate devices.The invention of piezoelectric pump makes it possible to integrate the two devices.Hower,the existing piezoelectric mixing-pumps are larger because the ...Typically,liquid pump and liquids mixer are two separate devices.The invention of piezoelectric pump makes it possible to integrate the two devices.Hower,the existing piezoelectric mixing-pumps are larger because the need the space outside the chamber,and another shortcome of them is that they cannot adjust the mixing ratio of two liquids.In this paper,a new piezoelectric pump being capable of integrating mixer and pump is presented,based on the theory of the piezoelectric pump with the unsymmetrical slopes element(USE).Besides the features of two inlets and one outlet,the piezoelectric pump has a rotatable unsymmetrical slopes element(RUSE).When the pump works,two fluids flow into the inlet channels respectively.Then the RUSE controls the ratio of the two flows by adjusting the flow resistances of the two inlet channels.The fluids form a net flow due to the USE principle,while they are mixed into a homogeneous solution due to strong turbulence flow field and complex vortices generated by RUSE in the chamber.And then the solution flows through the outlet.Firstly,the theoretical analysis on this pump is performed.Meanwhile,the flow field in the chamber is calculated and simulated.And then,the relationship between the flows of the two channels and the rotating angle of the RUSE is set up and analyzed.Finally,experiment with the proposed pump is carried out to verify the numerical results.A RUSE with 20° slope angle is used in the experiment.Four sets of data are tested with the RUSE at the rotating angles of 0°,6°,11°,and 16°,respectively,corresponding to the numerical models.The experimental results show that the empirical data and the theoretical data share the same trend.The maximum error between the theoretical flow and the experimental flow is 11.14%,and the maximum error between the theoretical flow ratio of the two inlets and the experimental one is 2.5%.The experiment verified the theoretical analysis.The proposed research provides a new idea for integration of micro liquids mixer and micro liquids pump.展开更多
Acid mine drainage(AMD) is one of the main reasons of slope instability in chemical mines with high sulfide. The pH values of the solution inside the mining pit decrease with the increasing of distance from ore body...Acid mine drainage(AMD) is one of the main reasons of slope instability in chemical mines with high sulfide. The pH values of the solution inside the mining pit decrease with the increasing of distance from ore body and vary from 1.2 to 4.6, according to the results of the water environmental investigation and the composition test of the slope sandstone in Xinqiao Pyrite Mine. Comparative experiments between original sandstone and AMD eroded sandstone samples show that after AMD erosion the uniaxial compressive strength and elastic modulus decrease by 30%-50% and 25%-45%, respectively, the cohesion and internal friction angle decrease obviously, and the Poisson ratio fluctuates between 0.20-0.29. The greater joints development, the higher residual stress after peak value, and the longer time to damage. Besides above, the reaction mechanism analysis of AMD eroded sandstone shows that the fillings in joints and fissures of sandstone are frequently decomposed and polyreacted, resulting in changes of interior molecule structure and fi'amework composition, and decreases of cohesion and angle of internal friction between rock structure interfaces.展开更多
Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission wit...Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of ^4F3/2→^4I9/2are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature.The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is,thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state.展开更多
Frequent shifts of output and operating mode require a pump turbine with excellent stability. Current researches show that large partial flow conditions in pump mode experience positive-slope phenomena with a large he...Frequent shifts of output and operating mode require a pump turbine with excellent stability. Current researches show that large partial flow conditions in pump mode experience positive-slope phenomena with a large head drop. The pressure fluctuation at the positive slope is crucial to the pump turbine unit safety. The operating instabilities at large partial flow conditions for a pump turbine are analyzed. The hydraulic performance of a model pump turbine is tested with the pressure fluctuations measured at unstable operating points near a positive slope in the performance curve. The hydraulic performance tests show that there are two separated positive-slope regions for the pump turbine, with the flow discharge for the first positive slope from 0.85 to 0.91 times that at the maximum efficiency point. The amplitudes of the pressure fluctuations at these unstable large partial flow conditions near the first positive slope are much larger than those at stable operating condtions. A dominant frequency is measured at 0.2 times the impeller rotational frequency in the flow passage near the impeller exit, which is believed to be induced by the rotating stall in the flow passage of the wicket gates. The test results also show hysteresis with pressure fluctuations when the pump turbine is operated near the first positive slope. The hysteresis creates different pressure fluctuations for those operation points even though their flow rates and heads are similar respectively. The pressure fluctuation characteristics at large partial flow conditions obtained by the present study will be helpful for the safe operation of pumped storage units.展开更多
基金Supported by Sanming Project of Medicine in Shenzhen,No.SZSM202211029.
文摘For cirrhotic refractory ascites,diuretics combined with albumin and vasoactive drugs are the first-line choice for ascites management.However,their therapeutic effects are limited,and most refractory ascites do not respond to medication treat-ment,necessitating consideration of drainage or surgical interventions.Con-sequently,numerous drainage methods for cirrhotic ascites have emerged,including large-volume paracentesis,transjugular intrahepatic portosystemic shunt,peritoneovenous shunt,automated low-flow ascites pump,cell-free and concentrated ascites reinfusion therapy,and peritoneal catheter drainage.This review introduces the advantages and disadvantages of these methods in different aspects,as well as indications and contraindications for this disease.
基金supported by National Natural Science Foundation of China (Grant No. 50575007, Grant No. 50775109)
文摘Regular valveless piezoelectric pumps have rectifying elements outside their chambers to produce net flow. These rectifying elements outside the chamber will increase the overall volume of the pump and prevent its minimization. Valveless piezoelectric pump with unsymmetrical slopes elements(USE), proposed in this paper, differs from other valveless pumps in that it is easy to be minimized by developing the chamber bottom as such a rectifying element. In this research, the working principle of the proposed pump was analyzed first. Numerical models were thereby established and numerical simulation was conducted to the chamber flow field with the method of time-dependent velocity. The effects of the USEs on the flow field in the chamber were shown clearly in simulation. And the particular feature of flow field in the chamber was discovered. It behaves a complex flow field, in which strong turbulent occurs companying a lot of vortexes in different directions and different sizes. This feature is just opposite to what regular piezoelectric pumps expect: a moderate flow field. The turbulent flow could be used to have different liquids stirred and well mixed in the chamber to produce homogeneous solution, emulsion or turbid liquid. Meanwhile, numerical simulation also presents the effect of the angles difference of the two slopes upon the flow field, and upon the flow rate of the pump, which fits to the theoretical analysis. Experiments with the proposed pump were also conducted to verify the numerical results. In these experiments, six USEs with different slope angles were used for efficiency tests, which proved the validity and reliability of the numerical analysis. The data obtained from numerical analysis agree well with that from the experiments. The errors ranged from 4.4% to 14.8% with their weighted average error being 9.7%.
基金supported by National Natural Science Foundation of China (Grant No. 50735002, Grant No. 50775109, and Grant No. 51075201)
文摘Typically,liquid pump and liquids mixer are two separate devices.The invention of piezoelectric pump makes it possible to integrate the two devices.Hower,the existing piezoelectric mixing-pumps are larger because the need the space outside the chamber,and another shortcome of them is that they cannot adjust the mixing ratio of two liquids.In this paper,a new piezoelectric pump being capable of integrating mixer and pump is presented,based on the theory of the piezoelectric pump with the unsymmetrical slopes element(USE).Besides the features of two inlets and one outlet,the piezoelectric pump has a rotatable unsymmetrical slopes element(RUSE).When the pump works,two fluids flow into the inlet channels respectively.Then the RUSE controls the ratio of the two flows by adjusting the flow resistances of the two inlet channels.The fluids form a net flow due to the USE principle,while they are mixed into a homogeneous solution due to strong turbulence flow field and complex vortices generated by RUSE in the chamber.And then the solution flows through the outlet.Firstly,the theoretical analysis on this pump is performed.Meanwhile,the flow field in the chamber is calculated and simulated.And then,the relationship between the flows of the two channels and the rotating angle of the RUSE is set up and analyzed.Finally,experiment with the proposed pump is carried out to verify the numerical results.A RUSE with 20° slope angle is used in the experiment.Four sets of data are tested with the RUSE at the rotating angles of 0°,6°,11°,and 16°,respectively,corresponding to the numerical models.The experimental results show that the empirical data and the theoretical data share the same trend.The maximum error between the theoretical flow and the experimental flow is 11.14%,and the maximum error between the theoretical flow ratio of the two inlets and the experimental one is 2.5%.The experiment verified the theoretical analysis.The proposed research provides a new idea for integration of micro liquids mixer and micro liquids pump.
基金Project(50321402) supported by the National Science Fund for Innovative Research Groupproject(2004CB619206) supported by tMajor State Basic Research Development Program of Chinaproject (50325414) supported by the National Science Fund fDistinguished Young Scholars
文摘Acid mine drainage(AMD) is one of the main reasons of slope instability in chemical mines with high sulfide. The pH values of the solution inside the mining pit decrease with the increasing of distance from ore body and vary from 1.2 to 4.6, according to the results of the water environmental investigation and the composition test of the slope sandstone in Xinqiao Pyrite Mine. Comparative experiments between original sandstone and AMD eroded sandstone samples show that after AMD erosion the uniaxial compressive strength and elastic modulus decrease by 30%-50% and 25%-45%, respectively, the cohesion and internal friction angle decrease obviously, and the Poisson ratio fluctuates between 0.20-0.29. The greater joints development, the higher residual stress after peak value, and the longer time to damage. Besides above, the reaction mechanism analysis of AMD eroded sandstone shows that the fillings in joints and fissures of sandstone are frequently decomposed and polyreacted, resulting in changes of interior molecule structure and fi'amework composition, and decreases of cohesion and angle of internal friction between rock structure interfaces.
基金Project supported by Estahban Branch,Islamic Azad University
文摘Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of ^4F3/2→^4I9/2are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature.The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is,thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state.
基金supported by National Natural Science Foundation of China(Grant No. 50976061)State Key Laboratory of Hydroscience and Engineering of China(Grant No. 2010-ZY-4)Beijing Municipal Natural Science Foundation of China(Grant No. 3072008)
文摘Frequent shifts of output and operating mode require a pump turbine with excellent stability. Current researches show that large partial flow conditions in pump mode experience positive-slope phenomena with a large head drop. The pressure fluctuation at the positive slope is crucial to the pump turbine unit safety. The operating instabilities at large partial flow conditions for a pump turbine are analyzed. The hydraulic performance of a model pump turbine is tested with the pressure fluctuations measured at unstable operating points near a positive slope in the performance curve. The hydraulic performance tests show that there are two separated positive-slope regions for the pump turbine, with the flow discharge for the first positive slope from 0.85 to 0.91 times that at the maximum efficiency point. The amplitudes of the pressure fluctuations at these unstable large partial flow conditions near the first positive slope are much larger than those at stable operating condtions. A dominant frequency is measured at 0.2 times the impeller rotational frequency in the flow passage near the impeller exit, which is believed to be induced by the rotating stall in the flow passage of the wicket gates. The test results also show hysteresis with pressure fluctuations when the pump turbine is operated near the first positive slope. The hysteresis creates different pressure fluctuations for those operation points even though their flow rates and heads are similar respectively. The pressure fluctuation characteristics at large partial flow conditions obtained by the present study will be helpful for the safe operation of pumped storage units.