Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating ...Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating flow field inside melting pool were established, the characteristics of the flow under different power parameters were further studied. Numerical calculation results show that there is a complex circular flow in the melt, a rapid horizontal flow exists on the solid/liquid interface and those flows confluence in the center of the melting pool. The flow velocity v increases with the increase of current intensity, but the flow patterns remain unchanged. When the current is 1000 A, the vmax reaches 4 mm/s and the flow on the interface achieves 3 mm/s. Flow patterns are quite different when the frequency changes from 10 kHz to 100 kHz, the mechanism of the frequency influence on the flow pattern is analyzed, and there is an optimum frequency for cold crucible directional solidification.展开更多
In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten wil...In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten will be used as armor tiles. A multi-physical field numerical analysis method is used in this paper. Its analysis model reflects more realistically the real divertor structure than other models. Two-dimensional (2D) and three-dimensional (3D) fluid flow field, temperature distribution and thermal stress analyses of the divertor plates are carried out by the ANSYS code. During the physics experimental phase with a heat flux of 1 MW/m2, a coolant velocity of 5.48 m/s, and a thermal stress of 750 kg/cm2, the graphite armor tiles successfully meet the requirements of temperature, thermal stress and sputtering erosion. The tungsten armor will be considered as a second candidate. The result of simulation can be used for upgrading the design parameters of the HL-2A poloidal divertor.展开更多
It is clarified that the important method to improve the blast temperature ofthe small and the middle blast furnaces whose production is about two-thirds of total sum of Chinafrom 1000℃ to 1250-1300℃ is to preheat b...It is clarified that the important method to improve the blast temperature ofthe small and the middle blast furnaces whose production is about two-thirds of total sum of Chinafrom 1000℃ to 1250-1300℃ is to preheat both their combustion-supporting air and coal gas. The airtemperature of blast furnaces can be reached to 1250-1300℃ by burning single blast furnace coal gasif high speed burner is applied to blast furnaces and new-type external combustion swirl-flowinghot stove is used to preheat their combustion-supporting air. The computational results of the flowand heat transfer processions in the hot stove prove that the surface of the bed of the thermalstorage balls there have not eccentric flow and the flow field and temperature field distribution iseven. The computational results of the blast temperature distribution are similar to thosedetermination experiment data. The numerical results also provide references for developing anddesigning the new-type external combustion swirl-flowing hot stoves.展开更多
The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field...The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field, the paper presents a flow field calculation method based on the optical flow algorithm. The motion of the point was calculated using the change in pixel intensity within two temporally adjacent frame images. The results show the high accuracy and resolution of the flow field at small displacement conditions.展开更多
Inlet recirculation is proved as an effective way for centrifugal compressor surge margin extension,and is successively used in some engineering applications.Unfortunately its working mechanism is still not being well...Inlet recirculation is proved as an effective way for centrifugal compressor surge margin extension,and is successively used in some engineering applications.Unfortunately its working mechanism is still not being well understood,which leads to redesigning of inlet recirculation mostly by experience.Also,most study about inlet recirculation is steady to date.It is necessary to study surge margin extension mechanism about inlet recirculation.To expose the mechanism in detail,steady and unsteady numerical simulations were performed on a centrifugal compressor with and without inlet recirculation.The results showed that,with inlet recirculation,the inlet axial velocity is augmented,relative Mach number around blade tip leading edge area is significantly reduced and so is the flow angle.As the flow angle decreased,the incidence angle reduced which greatly improves the flow field inside the impeller.Moreover,inlet recirculation changes the blade loading around blade tip and restrains the flow separation on the blade suction side at the leading edge area.The unsteady results of static pressure around blade surface,entropy at inlet crossflow section and vorticity distributions at near tip span surface indicated that,at near stall condition,strong fluctuation exists in the vicinity of tip area due to the interaction between tip leakage flow and core flow.By inlet recirculation these strong flow fluctuations are eliminated so the flow stability is greatly enhanced.All these improvements mentioned above are the reason for inlet recirculation delays compressor stall.This research reveals the surge margin extension reason of inlet recirculation from an unsteady flow viewpoint and provides important reference for inlet recirculation structure design.展开更多
The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regressi...The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regression calculation model for processing the flow data of a FCN-VGG19 aircraft is elaborated based on VGGNet(Visual Geometry Group Net)and FCN(Fully Convolutional Network)techniques.As shown by the results,the model displays a strong fitting ability,and there is almost no over-fitting in training.Moreover,the model has good accuracy and convergence.For different input data and different grids,the model basically achieves convergence,showing good performances.It is shown that the proposed simulation regression model based on FCN has great potential in typical problems of computational fluid dynamics(CFD)and related data processing.展开更多
基金Project (2011CB605504) supported by the National Basic Research Program of China
文摘Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating flow field inside melting pool were established, the characteristics of the flow under different power parameters were further studied. Numerical calculation results show that there is a complex circular flow in the melt, a rapid horizontal flow exists on the solid/liquid interface and those flows confluence in the center of the melting pool. The flow velocity v increases with the increase of current intensity, but the flow patterns remain unchanged. When the current is 1000 A, the vmax reaches 4 mm/s and the flow on the interface achieves 3 mm/s. Flow patterns are quite different when the frequency changes from 10 kHz to 100 kHz, the mechanism of the frequency influence on the flow pattern is analyzed, and there is an optimum frequency for cold crucible directional solidification.
文摘In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten will be used as armor tiles. A multi-physical field numerical analysis method is used in this paper. Its analysis model reflects more realistically the real divertor structure than other models. Two-dimensional (2D) and three-dimensional (3D) fluid flow field, temperature distribution and thermal stress analyses of the divertor plates are carried out by the ANSYS code. During the physics experimental phase with a heat flux of 1 MW/m2, a coolant velocity of 5.48 m/s, and a thermal stress of 750 kg/cm2, the graphite armor tiles successfully meet the requirements of temperature, thermal stress and sputtering erosion. The tungsten armor will be considered as a second candidate. The result of simulation can be used for upgrading the design parameters of the HL-2A poloidal divertor.
文摘It is clarified that the important method to improve the blast temperature ofthe small and the middle blast furnaces whose production is about two-thirds of total sum of Chinafrom 1000℃ to 1250-1300℃ is to preheat both their combustion-supporting air and coal gas. The airtemperature of blast furnaces can be reached to 1250-1300℃ by burning single blast furnace coal gasif high speed burner is applied to blast furnaces and new-type external combustion swirl-flowinghot stove is used to preheat their combustion-supporting air. The computational results of the flowand heat transfer processions in the hot stove prove that the surface of the bed of the thermalstorage balls there have not eccentric flow and the flow field and temperature field distribution iseven. The computational results of the blast temperature distribution are similar to thosedetermination experiment data. The numerical results also provide references for developing anddesigning the new-type external combustion swirl-flowing hot stoves.
文摘The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field, the paper presents a flow field calculation method based on the optical flow algorithm. The motion of the point was calculated using the change in pixel intensity within two temporally adjacent frame images. The results show the high accuracy and resolution of the flow field at small displacement conditions.
文摘Inlet recirculation is proved as an effective way for centrifugal compressor surge margin extension,and is successively used in some engineering applications.Unfortunately its working mechanism is still not being well understood,which leads to redesigning of inlet recirculation mostly by experience.Also,most study about inlet recirculation is steady to date.It is necessary to study surge margin extension mechanism about inlet recirculation.To expose the mechanism in detail,steady and unsteady numerical simulations were performed on a centrifugal compressor with and without inlet recirculation.The results showed that,with inlet recirculation,the inlet axial velocity is augmented,relative Mach number around blade tip leading edge area is significantly reduced and so is the flow angle.As the flow angle decreased,the incidence angle reduced which greatly improves the flow field inside the impeller.Moreover,inlet recirculation changes the blade loading around blade tip and restrains the flow separation on the blade suction side at the leading edge area.The unsteady results of static pressure around blade surface,entropy at inlet crossflow section and vorticity distributions at near tip span surface indicated that,at near stall condition,strong fluctuation exists in the vicinity of tip area due to the interaction between tip leakage flow and core flow.By inlet recirculation these strong flow fluctuations are eliminated so the flow stability is greatly enhanced.All these improvements mentioned above are the reason for inlet recirculation delays compressor stall.This research reveals the surge margin extension reason of inlet recirculation from an unsteady flow viewpoint and provides important reference for inlet recirculation structure design.
文摘The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regression calculation model for processing the flow data of a FCN-VGG19 aircraft is elaborated based on VGGNet(Visual Geometry Group Net)and FCN(Fully Convolutional Network)techniques.As shown by the results,the model displays a strong fitting ability,and there is almost no over-fitting in training.Moreover,the model has good accuracy and convergence.For different input data and different grids,the model basically achieves convergence,showing good performances.It is shown that the proposed simulation regression model based on FCN has great potential in typical problems of computational fluid dynamics(CFD)and related data processing.