A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a...A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.展开更多
The vibrational excitations of bent triatomic molecules are studied by using Lie algebra. The RMS error of fitting 30 spectroscopic data is 1.66 cm-1 for SO2. The results show that the expansion of a molecular algebra...The vibrational excitations of bent triatomic molecules are studied by using Lie algebra. The RMS error of fitting 30 spectroscopic data is 1.66 cm-1 for SO2. The results show that the expansion of a molecular algebraic Hamiltonian can well describe the experimental data. And the total vibrational levels can be calculated using this Hamiltonian. At the same time, the potential energy surface can also be obtained with the algebraic Hamiltonian.展开更多
本文简要综述了近几年来国内外利用高分辨大接收角度球面聚焦晶体阵列组成的同步辐射 X 射线荧光谱仪的发展及其在化学结构分析中的应用情况。重点介绍了高分辨 X 射线荧光谱仪的基本结构、工作原理及其在材料科学和生命科学中过渡金属...本文简要综述了近几年来国内外利用高分辨大接收角度球面聚焦晶体阵列组成的同步辐射 X 射线荧光谱仪的发展及其在化学结构分析中的应用情况。重点介绍了高分辨 X 射线荧光谱仪的基本结构、工作原理及其在材料科学和生命科学中过渡金属元素化学结构分析领域的应用。展开更多
The structural compression mechanism and compressibility of gallium oxyhydroxide, α -GaOOH, are investigated by in situ synchrotron radiation x-ray diffraction at pressures up to 31.0 GPa by using the diamond anvil c...The structural compression mechanism and compressibility of gallium oxyhydroxide, α -GaOOH, are investigated by in situ synchrotron radiation x-ray diffraction at pressures up to 31.0 GPa by using the diamond anvil cell technique. The α -GaOOH sustains its orthorhombic structure when the pressure is lower than 23.8 GPa. The compression is anisotropic under hydrostatic conditions, with the a-axis being most compressible. The compression proceeds mainly by shrinkage of the void channels formed by the coordination GaO3(OH)3 octahedra of the crystal structure. Anomaly is found in the compression behavior to occur at 14.6 GPa, which is concomitant with the equatorial distortion of the GaO3(OH)3 octahedra. A kink occurs at 14.6 GPa in the plot of finite strain f versus normalized stress F, indicating the change in the bulk compression behavior. The fittings of a second order Birch-Murnaghan equation of state to the P-V data in different pressure ranges result in the bulk moduli B0=199(1) GPa for P 〈 14.6 GPa and B0=167(2) GPa for P 〉 14.6 GPa. As the pressure is increased to about 25.8 GPa, a first-order phase transformation takes place, which is evidenced by the abrupt decrease in the unit cell volume and b and c lattice parameters.展开更多
The knowledge of the equation of state(EOS)and the compressibility of a solid are of central importance for the understanding of the behavior and the application of a condensed matter.The compression behavior of Zr41T...The knowledge of the equation of state(EOS)and the compressibility of a solid are of central importance for the understanding of the behavior and the application of a condensed matter.The compression behavior of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass(BMG)is investigated at room temperature up to 24 GPa using in-situ high pressure energy dispersive X-ray diffraction with synchrotron radiation.A model of basic cell volume has been established and the equation of state of BMG is determined by the calculation of radial distribution function.The experimental results indicate that the BMG contains a large amount of vacancy-like free volume.Low pressure(below 7 GPa)induces the collapse of the free volume to some extent and structure relaxation in the BMG.展开更多
Triatomic molecular potential energy surfaces (PES) are obtained by using coherent state to take the classical limits of algebraic Hamiltonian. The algebraic Hamiltonian for bent tria-tomic molecules can be obtained u...Triatomic molecular potential energy surfaces (PES) are obtained by using coherent state to take the classical limits of algebraic Hamiltonian. The algebraic Hamiltonian for bent tria-tomic molecules can be obtained using Lie algebraic method (the expansion coefficients are obtained by fitting spectroscopic data). This PES is applied to H2O molecule, and good results are obtained.展开更多
The highly excited vibrational states of asymmetric linear tetratomic molecules are studied in the framework of Lie algebra. By using symmetric group U1(4) U2(4) U3(4), we construct the Hamiltonian that includes not o...The highly excited vibrational states of asymmetric linear tetratomic molecules are studied in the framework of Lie algebra. By using symmetric group U1(4) U2(4) U3(4), we construct the Hamiltonian that includes not only Casimir operators but also Majorana operators M12,M13 and M23, which are useful for getting potential energy surface and force constants in Lie algebra method. By Lie algebra treatment, we obtain the eigenvalues of the Hamiltonian, and make the concrete calculation for molecule C2HF.展开更多
文摘A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.
文摘The vibrational excitations of bent triatomic molecules are studied by using Lie algebra. The RMS error of fitting 30 spectroscopic data is 1.66 cm-1 for SO2. The results show that the expansion of a molecular algebraic Hamiltonian can well describe the experimental data. And the total vibrational levels can be calculated using this Hamiltonian. At the same time, the potential energy surface can also be obtained with the algebraic Hamiltonian.
基金supported by the National Natural Science Foundation of China(Grant Nos.50772043,51172087,and 11074089)the National Basic Research Program of China(Grant No.2011CB808200)
文摘The structural compression mechanism and compressibility of gallium oxyhydroxide, α -GaOOH, are investigated by in situ synchrotron radiation x-ray diffraction at pressures up to 31.0 GPa by using the diamond anvil cell technique. The α -GaOOH sustains its orthorhombic structure when the pressure is lower than 23.8 GPa. The compression is anisotropic under hydrostatic conditions, with the a-axis being most compressible. The compression proceeds mainly by shrinkage of the void channels formed by the coordination GaO3(OH)3 octahedra of the crystal structure. Anomaly is found in the compression behavior to occur at 14.6 GPa, which is concomitant with the equatorial distortion of the GaO3(OH)3 octahedra. A kink occurs at 14.6 GPa in the plot of finite strain f versus normalized stress F, indicating the change in the bulk compression behavior. The fittings of a second order Birch-Murnaghan equation of state to the P-V data in different pressure ranges result in the bulk moduli B0=199(1) GPa for P 〈 14.6 GPa and B0=167(2) GPa for P 〉 14.6 GPa. As the pressure is increased to about 25.8 GPa, a first-order phase transformation takes place, which is evidenced by the abrupt decrease in the unit cell volume and b and c lattice parameters.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10004014).
文摘The knowledge of the equation of state(EOS)and the compressibility of a solid are of central importance for the understanding of the behavior and the application of a condensed matter.The compression behavior of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass(BMG)is investigated at room temperature up to 24 GPa using in-situ high pressure energy dispersive X-ray diffraction with synchrotron radiation.A model of basic cell volume has been established and the equation of state of BMG is determined by the calculation of radial distribution function.The experimental results indicate that the BMG contains a large amount of vacancy-like free volume.Low pressure(below 7 GPa)induces the collapse of the free volume to some extent and structure relaxation in the BMG.
文摘Triatomic molecular potential energy surfaces (PES) are obtained by using coherent state to take the classical limits of algebraic Hamiltonian. The algebraic Hamiltonian for bent tria-tomic molecules can be obtained using Lie algebraic method (the expansion coefficients are obtained by fitting spectroscopic data). This PES is applied to H2O molecule, and good results are obtained.
基金the National Natural Science Foundation of China (Grant No. 20173031)the State Key Laboratory of Theoretical and Computational Chemistry of Jilin University at Changchun (Grant No. 9801)the Science Foundation of Shandong Province of China (Grant No.Y98B08027)
文摘The highly excited vibrational states of asymmetric linear tetratomic molecules are studied in the framework of Lie algebra. By using symmetric group U1(4) U2(4) U3(4), we construct the Hamiltonian that includes not only Casimir operators but also Majorana operators M12,M13 and M23, which are useful for getting potential energy surface and force constants in Lie algebra method. By Lie algebra treatment, we obtain the eigenvalues of the Hamiltonian, and make the concrete calculation for molecule C2HF.