Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tes...Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.展开更多
The current research on the integrity of critical structures of rail vehicles mainly focuses on the design stage,which needs an effective method for assessing the service state.This paper proposes a framework for pred...The current research on the integrity of critical structures of rail vehicles mainly focuses on the design stage,which needs an effective method for assessing the service state.This paper proposes a framework for predicting the remaining useful life(RUL)of in-service structures with and without visible cracks.The hypothetical distribution and delay time models were used to apply the equivalent crack growth life data of heavy-duty railway cast steel knuckles,which revealed the evolution characteristics of the crack length and life scores of the knuckle under different fracture failure modes.The results indicate that the method effectively predicts the RUL of service knuckles in different failure modes based on the cumulative failure probability curves for different locations and surface crack lengths.This study proposes an RUL prediction framework that supports the dynamic overhaul and state maintenance of knuckle fatigue cracks.展开更多
Fatigue fracture is one of the main failure modes of Ti-6A1-4V alloy,fracture toughness and crack closure have strong effects on the fatigue crack growth(FCG)rate of Ti-6A1-4V alloy.The FCG rate of Ti-6A1-4V is inve...Fatigue fracture is one of the main failure modes of Ti-6A1-4V alloy,fracture toughness and crack closure have strong effects on the fatigue crack growth(FCG)rate of Ti-6A1-4V alloy.The FCG rate of Ti-6A1-4V is investigated by using experimental and analytical methods.The effects of stress ratio,crack closure and fracture toughness on the FCG rate are studied and discussed.A modified prediction model of the FCG rate is proposed,and the relationship between the fracture toughness and the stress intensity factor(SIF)range is redefined by introducing a correcting coefficient.Notched plate fatigue tests(including the fracture toughness test and the FCG rate test)are conducted to investigate the influence of affecting factors on the FCG rate.Comparisons between the predicted results of the proposed model,the Paris model,the Walker model,the Sadananda model,and the experimental data show that the proposed model gives the best agreement with the test data particularly in the near-threshold region and the Paris region,and the corresponding calculated fatigue life is also accurate in the same regions.By considering the effects of fracture toughness and crack closure,the novel FCG rate prediction model not only improves the estimating accuracy,but also extends the adaptability of the FCG rate prediction model in engineering.展开更多
It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under ra...It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under random loading.In this paper,an improved unique curve model is proposed based on the unique curve model,and the determination of the shape exponents of this model is provided.The crack growth rate curves of some materials taken from the literature are evaluated using the improved model,and the results indicate that the improved model can accurately predict the crack growth rate in the nearthreshold and Paris regimes.The improved unique curve model can solve the problems about the shape exponents determination and weak ability around the near-threshold regime meet in the unique curve model.In addition,the shape exponents in the improved model at negative stress ratios are discussed,which can directly adopt that in the unique curve model.展开更多
Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity f...Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-ΔK relations, the confidence-based da/dN-ΔK relations, and the probabilistic- and confidence-based da/dN-ΔK relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.展开更多
Predicting potential risks associated with the fatigue of key structural components is crucial in engineering design.However,fatigue often involves entangled complexities of material microstructures and service condit...Predicting potential risks associated with the fatigue of key structural components is crucial in engineering design.However,fatigue often involves entangled complexities of material microstructures and service conditions,making diagnosis and prognosis of fatigue damage challenging.We report a statistical learning framework to predict the growth of fatigue cracks and the life-to-failure of the components under loading conditions with uncertainties.Digital libraries of fatigue crack patterns and the remaining life are constructed by high-fidelity physical simulations.Dimensionality reduction and neural network architectures are then used to learn the history dependence and nonlinearity of fatigue crack growth.Path-slicing and re-weighting techniques are introduced to handle the statistical noises and rare events.The predicted fatigue crack patterns are self-updated and self-corrected by the evolving crack patterns.The end-to-end approach is validated by representative examples with fatigue cracks in plates,which showcase the digital-twin scenario in real-time structural health monitoring and fatigue life prediction for maintenance management decision-making.展开更多
Purpose–The study aims to provide a basis for the effective use of safety-related information data and a quantitative assessment way for the occurrence probability of the safety risk such as the fatigue fracture of t...Purpose–The study aims to provide a basis for the effective use of safety-related information data and a quantitative assessment way for the occurrence probability of the safety risk such as the fatigue fracture of the key components.Design/methodology/approach–The fatigue crack growth rate is of dispersion,which is often used to accurately describe with probability density.In view of the external dispersion caused by the load,a simple and applicable probability expression of fatigue crack growth rate is adopted based on the fatigue growth theory.Considering the isolation among the pairs of crack length a and crack formation time t(a∼t data)obtained from same kind of structural parts,a statistical analysis approach of t distribution is proposed,which divides the crack length in several segments.Furthermore,according to the compatibility criterion of crack growth,that is,there is statistical development correspondence among a∼t data,the probability model of crack growth rate is established.Findings–The results show that the crack growth rate in the stable growth stage can be approximately expressed by the crack growth control curve da/dt=5 Q•a,and the probability density of the crack growth parameter Q represents the external dispersion;t follows two-parameter Weibull distribution in certain a values.Originality/value–The probability density f(Q)can be estimated by using the probability model of crack growth rate,and a calculation example shows that the estimation method is effective and practical.展开更多
Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity...Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-△K relations, the confidence-based da/dN-△K relations, and the probabilistic- and confidence-based da/dN-△K relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.展开更多
The effects of precipitates on the fatigue crack growth rate of AA 7055 Al alloy subjected to different ageing treatments were investigated using transmission electron microscope and fatigue crack growth testing.The r...The effects of precipitates on the fatigue crack growth rate of AA 7055 Al alloy subjected to different ageing treatments were investigated using transmission electron microscope and fatigue crack growth testing.The results show that the T77 treated samples exhibit the lowest crack growth rate,while the crack growth rate of over-aged samples is the highest.In terms of the model based on the reversibility of dislocation motion within the plastic zone close to the crack tip,the improved crack growth resistance is attributed to many precipitates that are coherent with Al matrix in the under-aged and T77 treated samples.When the precipitate is coherent with the Al matrix,the larger the precipitate is,the slower the fatigue crack grows.The effects of grain boundary precipitates and precipitate free zone on the fatigue crack growth resistance are less significant than those of precipitates within grains of the alloy.展开更多
Three types of fatigue tests for an annealed carbon steel containing carbon of 0.42%were carried out on smooth specimens and specimens with a small blind hole in order to investigate the fatigue crack growth law.A sim...Three types of fatigue tests for an annealed carbon steel containing carbon of 0.42%were carried out on smooth specimens and specimens with a small blind hole in order to investigate the fatigue crack growth law.A simple predicting method for crack growth rates has been proposed involving strengthσband the relation between cyclic stress and strain.The validity of proposed method has been confirmed by experiments on several carbon steels with different loadings.展开更多
The effect of single overload on the fatigue crack growth in 2024-T3 and 7075-T6 Al alloys was analyzed.Fatigue tests under constantamplitude loading with overload peak were carried out on V-notched specimens.Fractogr...The effect of single overload on the fatigue crack growth in 2024-T3 and 7075-T6 Al alloys was analyzed.Fatigue tests under constantamplitude loading with overload peak were carried out on V-notched specimens.Fractographic analysis was used as a principal approach to explain the crack growth retardation due to the overload.Scanning electron microscopy(SEM)analyses were conducted on the fractured surface of failed specimens to study the retardation effect.The obtained results show that the overload application generates a plastic zone in both aluminum alloys.The generated plastic zone is three times larger in the case of 2024-T3 compared to 7075-T6,and thus,a significant crack retardation was induced for 2024-T3.The retardation effect due to the overload for 2024-T3 and 7075-T6 lasted for about 10 mm and 1 mm,respectively,from the point of overload application.展开更多
While pre-deformation is often conducted before aging treatment to increase the strength and microhardness of 2195 Al-Li alloy, it often increases the fatigue crack growth(FCG) rate and thus reduces the fatigue life o...While pre-deformation is often conducted before aging treatment to increase the strength and microhardness of 2195 Al-Li alloy, it often increases the fatigue crack growth(FCG) rate and thus reduces the fatigue life of the alloy.To determine the effects and causes of pre-deformation and heat treatment on the mechanical properties and FCG rate of2195 Al-Li alloy, and to provide a suitable calculation model for the FCG rate under different pre-deformation conditions, 2195 Al-Li alloy specimens with different degrees of pre-rolling(0, 3%, 6%, and 9%) were investigated. The experimental results indicate that with the increase of pre-rolling, the density of the T1phase and the uniformity of the S′distribution and the microhardness, tensile strength, and yield strength of the alloy increase and at the same time the FCG rate increases, and thus the fatigue life is reduced. It was also found that the normalized stress intensity factor of elastic modulus(E) can be applied to correlate the FCG rate of pre-rolled 2195 Al-Li alloy with constant C and K parameters.展开更多
The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of t...The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of the number of cycles were plotted. With the increase of peak temperature, the crack initiation life was shortened dramatically. Through optical microscopy (OM) and scanning electron microscopy (SEM) observation, it was found that multiple small cracks nucleated at the notch tip region but only one or two of them continued to develop in the following thermal cycles. The primary cracks generally propagated along a preferential direction. Microstructure changes after thermal fatigue were also discussed on the basis of SEM observation.展开更多
In order to prolong the service life of aircraft skin made from AA2524, the effects of laser shock peening(LSP) on fatigue crack growth(FCG) rate and fracture toughness(K_(c)) of AA2524 were investigated. Multiple LSP...In order to prolong the service life of aircraft skin made from AA2524, the effects of laser shock peening(LSP) on fatigue crack growth(FCG) rate and fracture toughness(K_(c)) of AA2524 were investigated. Multiple LSP treatment was performed on compact tension(CT) specimen from single side and double sides. The surface integrity was measured with Vickers hardness tester, X-ray diffractometer and confocal laser scanning microscope, respectively. FCG rate test and fracture toughness test under plane stress were carried out after LSP treatment. The microstructure features of cross-sections were observed with scanning electron microscope. The results showed that the micro-hardness and residual stress of CT specimens were increased dramatically after LSP treatment. Compared to the base metal(BM), the fatigue life was prolonged by 2.4 times and fracture toughness was increased by 22% after multiple LSP.展开更多
Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since t...Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since the FCG process is affected by various factors,no universal model exists due to the complexity of the mechanisms.Most of the existing models are obtained by fitting the experimental data and could hardly describe the integrative effect of most existing factors simultaneously.In order to account for the integrative effect of specimen parameters,material property and loading conditions on FCG process,a new model named integrative influence factor model(IIF) is proposed based on the plasticity-induced crack closure theory.Accordingly to the predictions of crack opening ratio(γ) and effective stress intensity factor range ratio(U) with different material under various loading conditions,predictions of γ and U by the IIF model are completely identical to the theoretical results from the plane stress state to the plane strain state when Poisson's ratio equals 1/3.When Poisson's ratio equals 0.3,predictions of γ and U by the IIF model are larger than the predictions by the existing model,and more close to the theoretical results.In addition,it describes the influence of R ratios on γ and U effectively in the whole region from-1.0 to 1.0.Moreover,several sets of test data of FCG rates in 5 kinds of aluminum alloys with various specimen thicknesses under different loading conditions are used to validate the IIF model,most of the test data are situated on the predicted curves or between the two curves that represent the specimen with different thicknesses under the same stress ratio.Some of the test data slightly departure from the predictions by the IIF model due to the surface roughness and errors in measurement.Besides,based on the analysis of the physical rule of crack opening ratios,a relative thickness of specimen is defined to describe the influence of material property,specimen thickness and so forth on FCG characteristics conveniently.In conclusion,the relative thickness of specimen simplifies the expression of FCG characteristic and provides a general parameter to analyze the fatigue characteristics of different materials with various thicknesses under different loading conditions.The IIF model describes the integrative effect of existing influence factors explicitly and quantitatively,and provides a helpful tool for fatigue property estimation of practical component and experiment design.展开更多
The standard center-cracked tensile specimens M (T) with different widths made of aluminum alloy were designed for fatigue crack growth rate experiments, and the effect of specimen size on the fatigue crack growth r...The standard center-cracked tensile specimens M (T) with different widths made of aluminum alloy were designed for fatigue crack growth rate experiments, and the effect of specimen size on the fatigue crack growth rate was discussed. The firing equation and the p-da/dN-△K curve of fatigue crack growth rate (with different confidence and reliability levels) were obtained by one-side tolerance factor analysis. In order to reasonably reflect the dispersion of material properties on the fatigue crack growth rate and fatigue crack propagation life, two novel statistical analysis methods were proposed, which can be used to describe the probability distribution of fatigue crack growth rate. Compared with the traditional statistical analysis method of probabilistic fatigue crack growth rate, the fitted curves from the novel statistical analysis methods yield more objective description on the probability distribution of crack growth rate.展开更多
Friction stir welding (FSW) was performed on 2024-T351 aluminum alloy plates. Metallographic analysis, Vickers microhardness and XRD tests were conducted to determine the properties of the welded zone. FE simulatio...Friction stir welding (FSW) was performed on 2024-T351 aluminum alloy plates. Metallographic analysis, Vickers microhardness and XRD tests were conducted to determine the properties of the welded zone. FE simulation of the FSW process was implemented for the different welding conditions to extract the residual stress and stress intensity factor (SIF). Fracture and fatigue behaviors of the welds which have the initial crack in the nugget zone and the crack orientation along the welding direction, were studied based on standard test methods. Fracture behavior of the welds was also evaluated by shearography method. The results showed that the tool rotational and traverse speeds affect the fracture toughness and fatigue crack growth rate. FSW provides 18%-49% reductions in maximum fracture load and fracture toughness. A slight diminution in fracture toughness of the joints was observed for lower traverse speed of the tool, and at higher traverse or rotational speeds, increasing the probability of defects may contribute to low fracture toughness. Fatigue crack propagation rate of all welds was slower than that of the base metal for low values of stress intensity factor range ΔK (ΔK〈13 MPa·m^1/2), but is much faster for high values of ΔK.展开更多
Cold expansion is an efficient way to improve the fatigue life of an open hole. In this paper, three finite element models have been established to crack growth from an expanded hole is simulated. Expansion and its de...Cold expansion is an efficient way to improve the fatigue life of an open hole. In this paper, three finite element models have been established to crack growth from an expanded hole is simulated. Expansion and its degree influence are studied using a numerical analysis. Stress intensity factors are determined and used to evaluate the fatigue life. The residual stress field is evaluated using a nonlinear analysis and superposed with the applied stress field in order to estimate fatigue crack growth. Experimental test is conducted under constant loading. The results of this investigation indicate expansion and its degree are a benefit of fatigue life and a good agreement was observed between FEM simulations and experimental results.展开更多
A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect o...A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect of mean stress on fatigue strength,and it is used to estimate the fatigue strength of a bearing steel in very high cycle fatigue regime at different stress ratios.The estimated results are also compared with those by Goodman formula.展开更多
The corrosion fatigue crack growth and near-threshold characteristics of a medium strength steel HT60 were investigated using compact tension specimens exposed to synthetic sea water. The da/dN-△AK_(eff) relation in ...The corrosion fatigue crack growth and near-threshold characteristics of a medium strength steel HT60 were investigated using compact tension specimens exposed to synthetic sea water. The da/dN-△AK_(eff) relation in air can give a conservative estimation of da/dN-△K relations in sea water. In the case of high R, however, crack growth acceleration at high △K regions appears to be cantrolled by the stress-assisted dissolution. The crack opening stress inlensity factor K_(op) detected by the back-face-strain method is the result of crack surface in contact with the corrosion products and therefore an overestimated value of K_(op) at the crack tip is given.展开更多
基金the National Natural Science Foundation of China(Nos.52175143 and 51571150)。
文摘Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.
基金Supported by National Natural Science Foundation of China (Grant No.52175123)Sichuan Provincial Outstanding Youth Fund (Grant No.22JDJQ0025)Independent Exploration Project of State Key Laboratory of Railway Transit Vehicle System (Grant No.2024RVL-T03)。
文摘The current research on the integrity of critical structures of rail vehicles mainly focuses on the design stage,which needs an effective method for assessing the service state.This paper proposes a framework for predicting the remaining useful life(RUL)of in-service structures with and without visible cracks.The hypothetical distribution and delay time models were used to apply the equivalent crack growth life data of heavy-duty railway cast steel knuckles,which revealed the evolution characteristics of the crack length and life scores of the knuckle under different fracture failure modes.The results indicate that the method effectively predicts the RUL of service knuckles in different failure modes based on the cumulative failure probability curves for different locations and surface crack lengths.This study proposes an RUL prediction framework that supports the dynamic overhaul and state maintenance of knuckle fatigue cracks.
基金Supported by the Joint Funds of National Natural Science Foundation of ChinaCivil Aviation Administration Foundation of China(Grant No.U1233201)Science and Technology Support Plan of Tianjin,China(Grant No.13ZCZDGX00200)
文摘Fatigue fracture is one of the main failure modes of Ti-6A1-4V alloy,fracture toughness and crack closure have strong effects on the fatigue crack growth(FCG)rate of Ti-6A1-4V alloy.The FCG rate of Ti-6A1-4V is investigated by using experimental and analytical methods.The effects of stress ratio,crack closure and fracture toughness on the FCG rate are studied and discussed.A modified prediction model of the FCG rate is proposed,and the relationship between the fracture toughness and the stress intensity factor(SIF)range is redefined by introducing a correcting coefficient.Notched plate fatigue tests(including the fracture toughness test and the FCG rate test)are conducted to investigate the influence of affecting factors on the FCG rate.Comparisons between the predicted results of the proposed model,the Paris model,the Walker model,the Sadananda model,and the experimental data show that the proposed model gives the best agreement with the test data particularly in the near-threshold region and the Paris region,and the corresponding calculated fatigue life is also accurate in the same regions.By considering the effects of fracture toughness and crack closure,the novel FCG rate prediction model not only improves the estimating accuracy,but also extends the adaptability of the FCG rate prediction model in engineering.
文摘It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under random loading.In this paper,an improved unique curve model is proposed based on the unique curve model,and the determination of the shape exponents of this model is provided.The crack growth rate curves of some materials taken from the literature are evaluated using the improved model,and the results indicate that the improved model can accurately predict the crack growth rate in the nearthreshold and Paris regimes.The improved unique curve model can solve the problems about the shape exponents determination and weak ability around the near-threshold regime meet in the unique curve model.In addition,the shape exponents in the improved model at negative stress ratios are discussed,which can directly adopt that in the unique curve model.
基金Project supported by the National Natural Science Foundation of China (Nos.50375130and50323003), the Special Foundation of National Excellent Ph.D.Thesis (No.200234) and thePlanned Itemforthe Outstanding Young Teachers ofMinistry ofEducationofChina (No.2101)
文摘Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-ΔK relations, the confidence-based da/dN-ΔK relations, and the probabilistic- and confidence-based da/dN-ΔK relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.
基金the National Natural Science Foundation of China(Grant Nos.52090032 and 11825203)。
文摘Predicting potential risks associated with the fatigue of key structural components is crucial in engineering design.However,fatigue often involves entangled complexities of material microstructures and service conditions,making diagnosis and prognosis of fatigue damage challenging.We report a statistical learning framework to predict the growth of fatigue cracks and the life-to-failure of the components under loading conditions with uncertainties.Digital libraries of fatigue crack patterns and the remaining life are constructed by high-fidelity physical simulations.Dimensionality reduction and neural network architectures are then used to learn the history dependence and nonlinearity of fatigue crack growth.Path-slicing and re-weighting techniques are introduced to handle the statistical noises and rare events.The predicted fatigue crack patterns are self-updated and self-corrected by the evolving crack patterns.The end-to-end approach is validated by representative examples with fatigue cracks in plates,which showcase the digital-twin scenario in real-time structural health monitoring and fatigue life prediction for maintenance management decision-making.
基金This research was supported by the China National Railway Group Co.,Ltd.Research and Development Project(N2022T008).
文摘Purpose–The study aims to provide a basis for the effective use of safety-related information data and a quantitative assessment way for the occurrence probability of the safety risk such as the fatigue fracture of the key components.Design/methodology/approach–The fatigue crack growth rate is of dispersion,which is often used to accurately describe with probability density.In view of the external dispersion caused by the load,a simple and applicable probability expression of fatigue crack growth rate is adopted based on the fatigue growth theory.Considering the isolation among the pairs of crack length a and crack formation time t(a∼t data)obtained from same kind of structural parts,a statistical analysis approach of t distribution is proposed,which divides the crack length in several segments.Furthermore,according to the compatibility criterion of crack growth,that is,there is statistical development correspondence among a∼t data,the probability model of crack growth rate is established.Findings–The results show that the crack growth rate in the stable growth stage can be approximately expressed by the crack growth control curve da/dt=5 Q•a,and the probability density of the crack growth parameter Q represents the external dispersion;t follows two-parameter Weibull distribution in certain a values.Originality/value–The probability density f(Q)can be estimated by using the probability model of crack growth rate,and a calculation example shows that the estimation method is effective and practical.
基金国家自然科学基金,Special Foundation of National Excellent Ph.D.Thesis,Outstanding Young Teachers of Ministry of Education of China
文摘Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-△K relations, the confidence-based da/dN-△K relations, and the probabilistic- and confidence-based da/dN-△K relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.
基金Project(2005CB623700) supported by the National Basic Research Program of China
文摘The effects of precipitates on the fatigue crack growth rate of AA 7055 Al alloy subjected to different ageing treatments were investigated using transmission electron microscope and fatigue crack growth testing.The results show that the T77 treated samples exhibit the lowest crack growth rate,while the crack growth rate of over-aged samples is the highest.In terms of the model based on the reversibility of dislocation motion within the plastic zone close to the crack tip,the improved crack growth resistance is attributed to many precipitates that are coherent with Al matrix in the under-aged and T77 treated samples.When the precipitate is coherent with the Al matrix,the larger the precipitate is,the slower the fatigue crack grows.The effects of grain boundary precipitates and precipitate free zone on the fatigue crack growth resistance are less significant than those of precipitates within grains of the alloy.
基金the supports from the Research Foundation for Visiting Scholars of Key Laboratory of Solid Mechanics and FML of Education Ministry,P R Chinathe supports from Japan Society for Promotion of Science
文摘Three types of fatigue tests for an annealed carbon steel containing carbon of 0.42%were carried out on smooth specimens and specimens with a small blind hole in order to investigate the fatigue crack growth law.A simple predicting method for crack growth rates has been proposed involving strengthσband the relation between cyclic stress and strain.The validity of proposed method has been confirmed by experiments on several carbon steels with different loadings.
基金the Deanship of Scientific Research at King Saud University for funding the work through the research group (No. RGP-VPP-035)
文摘The effect of single overload on the fatigue crack growth in 2024-T3 and 7075-T6 Al alloys was analyzed.Fatigue tests under constantamplitude loading with overload peak were carried out on V-notched specimens.Fractographic analysis was used as a principal approach to explain the crack growth retardation due to the overload.Scanning electron microscopy(SEM)analyses were conducted on the fractured surface of failed specimens to study the retardation effect.The obtained results show that the overload application generates a plastic zone in both aluminum alloys.The generated plastic zone is three times larger in the case of 2024-T3 compared to 7075-T6,and thus,a significant crack retardation was induced for 2024-T3.The retardation effect due to the overload for 2024-T3 and 7075-T6 lasted for about 10 mm and 1 mm,respectively,from the point of overload application.
基金Project(U21A20132) supported by the National Natural Science Foundation of ChinaProject(Gui Renzi2019(13))supported by the Guangxi Specially-invited Experts Foundation of Guangxi Zhuang Autonomous Region,China。
文摘While pre-deformation is often conducted before aging treatment to increase the strength and microhardness of 2195 Al-Li alloy, it often increases the fatigue crack growth(FCG) rate and thus reduces the fatigue life of the alloy.To determine the effects and causes of pre-deformation and heat treatment on the mechanical properties and FCG rate of2195 Al-Li alloy, and to provide a suitable calculation model for the FCG rate under different pre-deformation conditions, 2195 Al-Li alloy specimens with different degrees of pre-rolling(0, 3%, 6%, and 9%) were investigated. The experimental results indicate that with the increase of pre-rolling, the density of the T1phase and the uniformity of the S′distribution and the microhardness, tensile strength, and yield strength of the alloy increase and at the same time the FCG rate increases, and thus the fatigue life is reduced. It was also found that the normalized stress intensity factor of elastic modulus(E) can be applied to correlate the FCG rate of pre-rolled 2195 Al-Li alloy with constant C and K parameters.
文摘The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of the number of cycles were plotted. With the increase of peak temperature, the crack initiation life was shortened dramatically. Through optical microscopy (OM) and scanning electron microscopy (SEM) observation, it was found that multiple small cracks nucleated at the notch tip region but only one or two of them continued to develop in the following thermal cycles. The primary cracks generally propagated along a preferential direction. Microstructure changes after thermal fatigue were also discussed on the basis of SEM observation.
基金Project(52075552) supported by the National Natural Science Foundation of ChinaProject(kq2007085) supported by Changsha Municipal Natural Science Foundation,China。
文摘In order to prolong the service life of aircraft skin made from AA2524, the effects of laser shock peening(LSP) on fatigue crack growth(FCG) rate and fracture toughness(K_(c)) of AA2524 were investigated. Multiple LSP treatment was performed on compact tension(CT) specimen from single side and double sides. The surface integrity was measured with Vickers hardness tester, X-ray diffractometer and confocal laser scanning microscope, respectively. FCG rate test and fracture toughness test under plane stress were carried out after LSP treatment. The microstructure features of cross-sections were observed with scanning electron microscope. The results showed that the micro-hardness and residual stress of CT specimens were increased dramatically after LSP treatment. Compared to the base metal(BM), the fatigue life was prolonged by 2.4 times and fracture toughness was increased by 22% after multiple LSP.
基金supported by Military Pre-study Project of General Armament Department of China (Grant No. YG060101C)
文摘Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since the FCG process is affected by various factors,no universal model exists due to the complexity of the mechanisms.Most of the existing models are obtained by fitting the experimental data and could hardly describe the integrative effect of most existing factors simultaneously.In order to account for the integrative effect of specimen parameters,material property and loading conditions on FCG process,a new model named integrative influence factor model(IIF) is proposed based on the plasticity-induced crack closure theory.Accordingly to the predictions of crack opening ratio(γ) and effective stress intensity factor range ratio(U) with different material under various loading conditions,predictions of γ and U by the IIF model are completely identical to the theoretical results from the plane stress state to the plane strain state when Poisson's ratio equals 1/3.When Poisson's ratio equals 0.3,predictions of γ and U by the IIF model are larger than the predictions by the existing model,and more close to the theoretical results.In addition,it describes the influence of R ratios on γ and U effectively in the whole region from-1.0 to 1.0.Moreover,several sets of test data of FCG rates in 5 kinds of aluminum alloys with various specimen thicknesses under different loading conditions are used to validate the IIF model,most of the test data are situated on the predicted curves or between the two curves that represent the specimen with different thicknesses under the same stress ratio.Some of the test data slightly departure from the predictions by the IIF model due to the surface roughness and errors in measurement.Besides,based on the analysis of the physical rule of crack opening ratios,a relative thickness of specimen is defined to describe the influence of material property,specimen thickness and so forth on FCG characteristics conveniently.In conclusion,the relative thickness of specimen simplifies the expression of FCG characteristic and provides a general parameter to analyze the fatigue characteristics of different materials with various thicknesses under different loading conditions.The IIF model describes the integrative effect of existing influence factors explicitly and quantitatively,and provides a helpful tool for fatigue property estimation of practical component and experiment design.
基金Supported by the National Natural Science Foundation of China(No.51175072 and No.51335003)the Research Fund for the Doctoral Program of Higher Education of China(No.20110042130003)
文摘The standard center-cracked tensile specimens M (T) with different widths made of aluminum alloy were designed for fatigue crack growth rate experiments, and the effect of specimen size on the fatigue crack growth rate was discussed. The firing equation and the p-da/dN-△K curve of fatigue crack growth rate (with different confidence and reliability levels) were obtained by one-side tolerance factor analysis. In order to reasonably reflect the dispersion of material properties on the fatigue crack growth rate and fatigue crack propagation life, two novel statistical analysis methods were proposed, which can be used to describe the probability distribution of fatigue crack growth rate. Compared with the traditional statistical analysis method of probabilistic fatigue crack growth rate, the fitted curves from the novel statistical analysis methods yield more objective description on the probability distribution of crack growth rate.
文摘Friction stir welding (FSW) was performed on 2024-T351 aluminum alloy plates. Metallographic analysis, Vickers microhardness and XRD tests were conducted to determine the properties of the welded zone. FE simulation of the FSW process was implemented for the different welding conditions to extract the residual stress and stress intensity factor (SIF). Fracture and fatigue behaviors of the welds which have the initial crack in the nugget zone and the crack orientation along the welding direction, were studied based on standard test methods. Fracture behavior of the welds was also evaluated by shearography method. The results showed that the tool rotational and traverse speeds affect the fracture toughness and fatigue crack growth rate. FSW provides 18%-49% reductions in maximum fracture load and fracture toughness. A slight diminution in fracture toughness of the joints was observed for lower traverse speed of the tool, and at higher traverse or rotational speeds, increasing the probability of defects may contribute to low fracture toughness. Fatigue crack propagation rate of all welds was slower than that of the base metal for low values of stress intensity factor range ΔK (ΔK〈13 MPa·m^1/2), but is much faster for high values of ΔK.
文摘Cold expansion is an efficient way to improve the fatigue life of an open hole. In this paper, three finite element models have been established to crack growth from an expanded hole is simulated. Expansion and its degree influence are studied using a numerical analysis. Stress intensity factors are determined and used to evaluate the fatigue life. The residual stress field is evaluated using a nonlinear analysis and superposed with the applied stress field in order to estimate fatigue crack growth. Experimental test is conducted under constant loading. The results of this investigation indicate expansion and its degree are a benefit of fatigue life and a good agreement was observed between FEM simulations and experimental results.
基金supported by the National Natural Science Foundation of China(11172304 and 11021262)the National Basic Research Program of China (2012CB937500)
文摘A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect of mean stress on fatigue strength,and it is used to estimate the fatigue strength of a bearing steel in very high cycle fatigue regime at different stress ratios.The estimated results are also compared with those by Goodman formula.
文摘The corrosion fatigue crack growth and near-threshold characteristics of a medium strength steel HT60 were investigated using compact tension specimens exposed to synthetic sea water. The da/dN-△AK_(eff) relation in air can give a conservative estimation of da/dN-△K relations in sea water. In the case of high R, however, crack growth acceleration at high △K regions appears to be cantrolled by the stress-assisted dissolution. The crack opening stress inlensity factor K_(op) detected by the back-face-strain method is the result of crack surface in contact with the corrosion products and therefore an overestimated value of K_(op) at the crack tip is given.