With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconne...With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconnection and interaction of multiple energy sources are developing rapidly.Biomass energy,a renewable green energy source with low pollution and wide distribution,has significant application potential in integrated energy systems.Considering the application of biomass energy in townships,this study established an integrated biomass energy system and proposed a model to optimize its operation.Lowest economic cost and highest clean energy utilization rate were considered as the objective functions.In addition,a plan was suggested to adjust the heat-electricity ratio based on the characteristics of the combined heat and power of the biomass.Finally,a simulation analysis conducted for a town in China was discussed,demonstrating that the construction of a township integrated-energy system and the use of biomass can significantly reduce operating costs and improve the energy utilization rate.Moreover,by adjusting the heat-electricity ratio,the economic cost was further reduced by 6.70%,whereas the clean energy utilization rate was increased by 5.14%.展开更多
Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response me...Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
Photodissociation of jet-cooled HOD via the C state around 124 nm has been studied using the H(D)-atom Rydberg tagging time-of-flight technique. Rotational state resolved action spectrum and the product translationa...Photodissociation of jet-cooled HOD via the C state around 124 nm has been studied using the H(D)-atom Rydberg tagging time-of-flight technique. Rotational state resolved action spectrum and the product translational energy distribution spectra have been recorded for both D+OH and H+OD dissociation channels. Product channel OH/OD branching ratios for the individual C-X rotational transition have been determined. A comparison is also given with the B-X and A-X transitions. In addition, the dissociation energy of the OD bond in HOD has been determined accurately to be 41751.3±5 cm-1.展开更多
The growth and interspecies competition of two red tide algal species Thalassiosira pseudonana Hasle et Heimdal and Gymnodinium sp. were studied under different concentration ratios of nitrogen to phosphorus, and the ...The growth and interspecies competition of two red tide algal species Thalassiosira pseudonana Hasle et Heimdal and Gymnodinium sp. were studied under different concentration ratios of nitrogen to phosphorus, and the algal hatch culture experiments were conducted. The physiological and biochemical indexes were measured periodically, including the maximum comparing growth rate, relative growth rate, average double time and chlorophyll a concentration. The results showed that when the concentration ratio of nitrogen to phosphorus was 16: 1, the maximum comparing growth rate, relative growth rate and chlorophyll a concentration of Thalassiosira pseudonana all reached the highest,and average double time was the shortest. This implied that the optimal concentration ratio of nitrogen to phosphorus of Thalassiosira pseudonana is 16: 1. When the concentration ratio of nitrogen to phosphorus was 6:1, the maximum comparing growth rate, relative growth rate and the chlorophyll a concentration of Gymnodinium sp. reached the highest, and average double time was the shortest, so the optimal concentration ratio of nitrogen to phosphorus of Gymnodinium sp. is 6: 1. From the growth curves as indicated both in the cell density and the chlorophyll a concentration, it is suggested that the influence of concentration ratio of nitrogen to phosphorus on the chlorophyll a concentration and the cell density are almost the same. Different concentration ratios of nitrogen to phosphorus had weak influence on community succession and the competition between the two algae. Gymnodinium sp. may use the phosphorus in vivo for growth, so it is important to pay attention to the concealment of phosphorus, in order to avoid the outbreak of red tide. On the basis of the importance of nitrogen and phosphorus and the ratio of their concentration, the possible outbreak mechanism of red tide of the two algae was also discussed.展开更多
Microalgal lipids are regarded as main future feedstock of biofuels for its higher efficiency of accumulation and sus- tainable production. In order to investigate the effect of various nitrogen to phosphorus ratios o...Microalgal lipids are regarded as main future feedstock of biofuels for its higher efficiency of accumulation and sus- tainable production. In order to investigate the effect of various nitrogen to phosphorus ratios on cells growth, chlorophyll content and accumulation of lipids in Dunaliella tertiolecta, experiments were carried out in modified microalgal medium with inorganic nitrogen (nitrate-nitrogen) or organic nitrogen (urea-nitrogen) as the sole nitrogen source at initial N:P ratios ranging from 1:1 to 32:1. The favorable N:P of 16:1 in the nitrate-N or urea-N medium yielded the maximum cell density and specific growth rate. Decrease in chlorophyll content were observed at the N:P of 4:1 in both nitrate-N and urea-N cultures. It was also observed that the maximum lipids concentration was obtained at the N:P of 4:1 in both nitrate and urea nutrient medium. The lipid productivity and lipid content of cultures in the urea-N medium at the N:P of 4: lwere markedly higher than those from cultures with other N:P ratios (p〈 0.05). The results of this work illustrate the possibility that higher ratios of nitrogen to phosphorus have enhancing effect on cells growth of D. tertiolecta. Conversely, higher lipid accumulation is associated with a decrease in chlorophyll content under lower ratios of nitro- gen to phosphorus. The results confirm the hypothesis of this study that a larger metabolic flux has been channeled to lipid accumu- lation in D. tertiolecta cells when the ratios of nitrogen to phosphorus drop below a critical level.展开更多
Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,t...Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.展开更多
In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standa...In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered.The stationary probability density function(SPDF)of the harvester is obtained by the improved stochastic averaging.Then,with the adiabatic approximation theory,the analytical expression of signal-to-noise ratio(SNR)for the TEH is deduced to characterize stochastic resonance(SR).To enhance direct current(DC)power delivery from a rotational TEH,the influences of system parameters on SR is discussed.The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system.The TEH has higher harvesting performance under the optimal SR.That is,the optimal parameter combinations can induce optimal SR and maximize harvesting performance.Thus,the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter.展开更多
This paper studied the effects of different ratios of nitrogen and phospho- rus on the growth and competition of Anabaena sp. strain PCC and chloralla vul- gads (low nitrogen-phosphorus ratio group: N/P=16:1; Mediu...This paper studied the effects of different ratios of nitrogen and phospho- rus on the growth and competition of Anabaena sp. strain PCC and chloralla vul- gads (low nitrogen-phosphorus ratio group: N/P=16:1; Medium low nitrogen-phospho- rus ratio group: N/P=32:1; Medium high nitrogen-phosphorus ratio group: N/P=64:1; High nitrogen-phosphorus ratio group: N/P=320:1). Results suggested that the largest amount of anabaena sp.strain PCC survived in medium high nitrogen-phosphorus ratio group. The nitrogen-phosphorus ratio showed no significant influences on the growth of Chlorella vulgaris, but it exerted dramatic influences on the growth of Chlore/la vulgaris of the mixed cultivation system. The largest amount of Ch/orel/a vulgaris can be found in the medium-high nitrogen-phosphorus ratio group. The inhi- bition parameter of nitrogen-phosphorus on the algae was distinctive. Anabaena sp. strain PCC had advantages in the competition with the low nitrogen-phosphorus ra- tio and medium-low nitrogen-phosphorus ratio. Potential instability existed between anabaena sp.strain PCC and Chlorella vulgaris when the nitrogen to phosphorus ratio was medium-high and high.展开更多
The quality factor Q, which reflects the energy attenuation of seismic waves in subsurface media, is a diagnostic tool for hydrocarbon detection and reservoir characterization. In this paper, we propose a new Q extrac...The quality factor Q, which reflects the energy attenuation of seismic waves in subsurface media, is a diagnostic tool for hydrocarbon detection and reservoir characterization. In this paper, we propose a new Q extraction method based on the energy ratio before and after the wavelet attenuation, named the energy-ratio method(ERM). The proposed method uses multipoint signal data in the time domain to estimate the wavelet energy without invoking the source wavelet spectrum, which is necessary in conventional Q extraction methods, and is applicable to any source wavelet spectrum; however, it requires high-precision seismic data. Forward zero-offset VSP modeling suggests that the ERM can be used for reliable Q inversion after nonintrinsic attenuation(geometric dispersion, refl ection, and transmission loss) compensation. The application to real zero-offset VSP data shows that the Q values extracted by the ERM and spectral ratio methods are identical, which proves the reliability of the new method.展开更多
Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of ...Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of fractured rock mass.The strength and deformation features of grouting-reinforced rock mass were analyzed under different loading manners;the energy evolution mechanism of grouting-reinforced rock mass specimens with different particle sizes and features was investigated;the energy dissipation ratio and post-peak stress decreasing rate were employed to evaluate the bearing stability of grouting-reinforced rock mass.The results show that the strength and ductility of granite-reinforced rock mass(GRM)under biaxial loading are higher than that of sandstone-reinforced rock mass(SRM)under uniaxial loading.Besides,the energy evolution characteristics of grouting-reinforced rock mass under uniaxial and biaxial loading mainly could be divided into early,middle,and late stages.In the early stage,total,elastic,and dissipation energies were quite small with flatter curves;in the middle stage,elastic energy increased rapidly,whereas dissipation energy increased slowly;in the late stage,dissipation energy increased sharply.The energy dissipation ratio was used to represent the pre-peak plastic deformation.Under uniaxial loading,this ratio increased as the particle size increased and the pre-peak plastic deformation of grouting-reinforced rock mass became larger;under biaxial loading,it dropped as the particle size increased,and the pre-peak plastic deformation of grouting-reinforced rock mass became smaller.The post-peak stress decline rate A_(v) was used to assess the post-peak bearing performance of grouting-reinforced rock mass.Under uniaxial loading,parameter A_(v) exhibited reduction as the particle size kept increasing,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was greater,and the bearing capacity was greater;under biaxial loading,A_(v) increased with the particle size,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was low and the bearing capacity was reduced.The findings are considered instrumental in improving the stability of the roadway-surrounding rock by granite and sandstone grouting.展开更多
Ammonia-diesel dual fuel(ADDF)engines for transportation applications are an important way to reduce carbon emissions.In order to achieve better combustion of ammonia in diesel engines.A small-bore single-cylinder eng...Ammonia-diesel dual fuel(ADDF)engines for transportation applications are an important way to reduce carbon emissions.In order to achieve better combustion of ammonia in diesel engines.A small-bore single-cylinder engine was converted into an ADDF engine with the help of mature computational fluid dynamics(CFD)simulation software to investigate the performance of an engine with a high ammonia energy ratio(AER),and to study the effect of spray tilt angle on ADDF engine.The results showed that the increase in AER reduced nitric oxide(NO)and nitrogen dioxide(NO2)emissions but increased nitrous oxide(N2O)and unburned ammonia emissions.AER in the range of 50%-70%achieved lower greenhouse gases(GHG)emissions than the pure diesel mode.Relative to the pure diesel mode,when the AER was 60%,the indicated thermal efficiency(ITE)was increased by 0.2%and the GHG emissions were decreased by 22.3%,but carbon monoxide(CO)and Hydrocarbon(HC)emissions were increased.Increasing the in-cylinder combustion temperature or high-temperature region range of the ADDF engine could reduce GHG emissions.At an AER of 60%,an increase in the spray tilt angle helped the ammonia combustion in the residual gap to reduce the unburned ammonia emissions.Compared to the pure diesel mode with a spray tilt angle of 75°,an AER of 60%with a spray tilt angle of 77.5°improved the ITE by 1.5%,and reduced theGHGemissions by 25.7%.Adjusting the spray tilt angle of theADDFengine also reducedCOandHCemissions.This is an effective way to improve ADDF engine performance by adjusting the spray tilt angle.展开更多
The ratio of nitrogen/phosphorus (N/P) is known to affect cell proliferation of some marine micro algae. We evaluated the effect of N/P ratios on the proliferation and succession of phytoplankton using five marine m...The ratio of nitrogen/phosphorus (N/P) is known to affect cell proliferation of some marine micro algae. We evaluated the effect of N/P ratios on the proliferation and succession of phytoplankton using five marine micro algae species. We used two sources of nitrogen, NH4Cl (N1) and urea (N2), and a single source of phosphorous, NaH2PO4(P). The optimal N/P ratio that differed among the five species was affected by the source of nitrogen, being as follows (N1/P, N2/P in order): Thalassiosira sp. (30/1, 20/1), Heterosigma akashiwo (30/1, 30/1), Chroornonas salina (20/1, 30/1), Chaetoceros gracilis (40/1, 60/1), and A lexandrium sp. (10/1, 30/1). Thus, the source of nitrogen must be considered when analyzing the N/P ratio. Our results provide insight for predicting phytoplankton succession in coastal waters and may be used to forecast the potential risk of harmful algal blooms.展开更多
Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carb...Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio.展开更多
The effects of varying nitrogen (N): phosphorus (P) ratios on the growth and N-uptake and assimilation of the harmful dinoflagellates Prorocentrum minimum and Prorocentrum donghaiense were examined in turbidistat...The effects of varying nitrogen (N): phosphorus (P) ratios on the growth and N-uptake and assimilation of the harmful dinoflagellates Prorocentrum minimum and Prorocentrum donghaiense were examined in turbidistat culture experiments. Algal cultures were supplied with media containing PO4^3- in various concentrations to obtain a wide range of N:P ratios. Experiments to determine rates of N uptake and assimilation of different N sources (NO^3-, NH4^+, urea and glycine by P. minimum and NO3^-, NH4^+ by P. donghaiense) were conducted using ^15-N tracer techniques at each N:P ratio. The growth rates suggested nutrient limitation at both high and low N:P ratios relative to the Redfield ratio. On a diel basis, the growth of both species was regulated by the light-dark cycle, which may be a result of regulation of both lightdependent growth and light-independent nutrient uptake. Maximum growth rates of both species always occurred at the beginning of light phase. In P-rich medium (low N:P ratio), both species had higher N assimilation rates, suggesting N limitation. Low assimilation coefficients at high N:P ratios suggested P limitation of N uptake and assimilation. NO3 ^-and NH4^+ contributed more than 90% of the total N uptake of P. minimum. Reduced N sources were more quickly assimilated than NO3^-. Highest average daily growth rates were recorded near an N:P ratio of 12 for both species. The N uptake rates of cultures at N:P ratios near Redfield ratio were more balanced with growth rates. The linkage between growth rates and N uptake/assimilation rates were conceptually described by the variation of cell N quota. The N:P ratios affect the N uptake and growth of Prorocentrum spp., and may regulate their bloom progression in eutrophic ecosystems.展开更多
To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into i...To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into intrinsic mode functions using the empirical mode decomposition approach. Based on the empirical mode decomposition results, the energy of each intrinsic mode function was extracted, and the vortex energy ratio was proposed to analyze how the perturbation in the flow affected the measurement performance of the vortex flowmeter. The relationship between the vortex energy ratio of the signal and the flow condition was established. The results show that the vortex energy ratio is sensitive to the flow condition and ideal for the characterization of the vortex flowmeter signal. Moreover, the vortex energy ratio under normal flow condition is greater than 80%, which can be adopted as an indicator to diagnose the state of a vortex flowmeter.展开更多
In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon i...In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon isotope ratio( δ^(13)C),leaf nitrogen content(LNC) and stomatal density(SD) with altitude variation in northsubtropical humid mountain climate zone of China.The results showed that LNC and SD both significantly increased linearly along the altitudinal gradient ranging from 1000 to 2200 m,whereas leafδ^(13)C exhibited a significantly negative correlation with the altitude.Such a correlation pattern differs obviously from that obtained in offshore low-altitude humid environment or inland high-altitude semi-arid environment,suggesting that the pattern of increasing δ^(13)C with the altitude cannot be generalized.The negative correlation between δ ^(13)C and altitude might be attributed mainly to the strengthening of carbon isotope fractionation in plants caused by increasing precipitation with altitude.Furthermore,there was a remarkable negative correlation between leaf δ ^(13)C and LNC.One possible reason was that increasing precipitation that operates to increase isotopic discrimination with altitude overtook the LNC in determining the sign of leaf δ ^(13)C.The significant negative correlation between leaf δ ^(13)C and SD over altitudes was also found in the present study,indicating that increases in SD with altitude would reduce,rather than enhance plant δ^(13)C values.展开更多
In order to screen suitable high hybrid wheat seed production technology,the split-plot experiment design was adopted and study was carried out about the effects of the different row ratios of male and female parents ...In order to screen suitable high hybrid wheat seed production technology,the split-plot experiment design was adopted and study was carried out about the effects of the different row ratios of male and female parents and application amount of nitrogen fertilizer on hybrid wheat seed production and its component factors. The results showed that the seed production increased with the increase in the number of female parent row. When the row ratio of male and female parents was 2 ∶ 6,the seed production was 3 683. 8 kg/ha; when the application amount of nitrogen fertilization was 50 kg/ha,the seed production was 3 649. 4 kg/ha; the interaction between the row ratio of male and female parents and the application amount of nitrogen fertilizer indicated that when the row ratio of male and female parents was 2∶ 6 and the application amount of nitrogen fertilizer was 300 kg/ha,the seed production reached the highest( 4160. 6 kg/ha). The row ratio of male and female parents and application amount of nitrogen fertilizer had significant effect on the component factors of seed production,including the number of grains per spike,spike weight and setting percentage. When the row ratio of male and female parents was 2∶ 5,the number of grains per spike,spike weight and setting percentage were the highest at 26. 7 grains,1. 12 g,and 62. 6% respectively; when application amount of nitrogen fertilizer was 450 kg/ha,the number of grains per spike,spike weight and setting percentage were the highest at 26. 0 grains,1. 08 g,and59. 2% respectively; the interaction of row ratio of male and female parents and application amount of nitrogen fertilizer had significant effect on the number of grains per spike,spike weight and setting percentage; when the row ratio of male and female parents was 2∶ 5 and the application amount of nitrogen fertilizer was 300 kg/ha,the number of grains per spike,spike weight and setting percentage were the highest at 29. 6grains,1. 24 g,and 71. 6% respectively. The number of grains per spike is the largest component factor for seed production. Increasing the number of grains per spike can increase the seed production. According to the effects of row ratio of male and female parents and application amount of nitrogen fertilizer on the component factors of seed production,the optimal condition was 2∶ 5-2∶ 6 for row ratio of male and female parents and 300-450 kg/ha for application amount of nitrogen fertilizer.展开更多
Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K ...Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.展开更多
Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to...Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to abundant sunshine, strong solar radiation andmoderate heat, the agriculture is very developed. The south mountainous area of Ningxia, including both Yanchi and Tongxin counties,is short of rain, The vast lands cannot be irrigated. Nonirrigated agriculture and展开更多
基金supported by the National Natural Science Foundation of China(U2066211)。
文摘With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconnection and interaction of multiple energy sources are developing rapidly.Biomass energy,a renewable green energy source with low pollution and wide distribution,has significant application potential in integrated energy systems.Considering the application of biomass energy in townships,this study established an integrated biomass energy system and proposed a model to optimize its operation.Lowest economic cost and highest clean energy utilization rate were considered as the objective functions.In addition,a plan was suggested to adjust the heat-electricity ratio based on the characteristics of the combined heat and power of the biomass.Finally,a simulation analysis conducted for a town in China was discussed,demonstrating that the construction of a township integrated-energy system and the use of biomass can significantly reduce operating costs and improve the energy utilization rate.Moreover,by adjusting the heat-electricity ratio,the economic cost was further reduced by 6.70%,whereas the clean energy utilization rate was increased by 5.14%.
文摘Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
基金ACKNOWLEDGMENTS This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology, and the National Natural Science Foundation of China.
文摘Photodissociation of jet-cooled HOD via the C state around 124 nm has been studied using the H(D)-atom Rydberg tagging time-of-flight technique. Rotational state resolved action spectrum and the product translational energy distribution spectra have been recorded for both D+OH and H+OD dissociation channels. Product channel OH/OD branching ratios for the individual C-X rotational transition have been determined. A comparison is also given with the B-X and A-X transitions. In addition, the dissociation energy of the OD bond in HOD has been determined accurately to be 41751.3±5 cm-1.
文摘The growth and interspecies competition of two red tide algal species Thalassiosira pseudonana Hasle et Heimdal and Gymnodinium sp. were studied under different concentration ratios of nitrogen to phosphorus, and the algal hatch culture experiments were conducted. The physiological and biochemical indexes were measured periodically, including the maximum comparing growth rate, relative growth rate, average double time and chlorophyll a concentration. The results showed that when the concentration ratio of nitrogen to phosphorus was 16: 1, the maximum comparing growth rate, relative growth rate and chlorophyll a concentration of Thalassiosira pseudonana all reached the highest,and average double time was the shortest. This implied that the optimal concentration ratio of nitrogen to phosphorus of Thalassiosira pseudonana is 16: 1. When the concentration ratio of nitrogen to phosphorus was 6:1, the maximum comparing growth rate, relative growth rate and the chlorophyll a concentration of Gymnodinium sp. reached the highest, and average double time was the shortest, so the optimal concentration ratio of nitrogen to phosphorus of Gymnodinium sp. is 6: 1. From the growth curves as indicated both in the cell density and the chlorophyll a concentration, it is suggested that the influence of concentration ratio of nitrogen to phosphorus on the chlorophyll a concentration and the cell density are almost the same. Different concentration ratios of nitrogen to phosphorus had weak influence on community succession and the competition between the two algae. Gymnodinium sp. may use the phosphorus in vivo for growth, so it is important to pay attention to the concealment of phosphorus, in order to avoid the outbreak of red tide. On the basis of the importance of nitrogen and phosphorus and the ratio of their concentration, the possible outbreak mechanism of red tide of the two algae was also discussed.
基金partially supported by Tianjin Marine Revitalization Plan of Science and Technology (No.KJXH2013-16) from Tianjin Oceanic Administration,China
文摘Microalgal lipids are regarded as main future feedstock of biofuels for its higher efficiency of accumulation and sus- tainable production. In order to investigate the effect of various nitrogen to phosphorus ratios on cells growth, chlorophyll content and accumulation of lipids in Dunaliella tertiolecta, experiments were carried out in modified microalgal medium with inorganic nitrogen (nitrate-nitrogen) or organic nitrogen (urea-nitrogen) as the sole nitrogen source at initial N:P ratios ranging from 1:1 to 32:1. The favorable N:P of 16:1 in the nitrate-N or urea-N medium yielded the maximum cell density and specific growth rate. Decrease in chlorophyll content were observed at the N:P of 4:1 in both nitrate-N and urea-N cultures. It was also observed that the maximum lipids concentration was obtained at the N:P of 4:1 in both nitrate and urea nutrient medium. The lipid productivity and lipid content of cultures in the urea-N medium at the N:P of 4: lwere markedly higher than those from cultures with other N:P ratios (p〈 0.05). The results of this work illustrate the possibility that higher ratios of nitrogen to phosphorus have enhancing effect on cells growth of D. tertiolecta. Conversely, higher lipid accumulation is associated with a decrease in chlorophyll content under lower ratios of nitro- gen to phosphorus. The results confirm the hypothesis of this study that a larger metabolic flux has been channeled to lipid accumu- lation in D. tertiolecta cells when the ratios of nitrogen to phosphorus drop below a critical level.
基金funded by the National Natural Science Foundation of China (31871584)the Agricultural Science and Technology Innovation Program, Chinese Academy of Agricultural Sciences (CAAS-ZDRW202201)+2 种基金the Fundamental Research Funds for Central Non-profit Scientific Institution, China (1610132020011)the “Open the list” in charge of the Science and Technology Project of Ordos, Center for Agro-pastoral Ecology and Resource Conservation of Ordos City, Inner Mongolia, China (JBGS2021-001)the Inner Mongolia Autonomous Region Research Project (2021EEDSCXSFQZD011)。
文摘Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.
基金This work has been supported by the National Natural Science Foundation of China(Grant No.12072025)Beijing Natural Science 5 Foundation(Grant No.1222015)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2022JQ-044).
文摘In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered.The stationary probability density function(SPDF)of the harvester is obtained by the improved stochastic averaging.Then,with the adiabatic approximation theory,the analytical expression of signal-to-noise ratio(SNR)for the TEH is deduced to characterize stochastic resonance(SR).To enhance direct current(DC)power delivery from a rotational TEH,the influences of system parameters on SR is discussed.The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system.The TEH has higher harvesting performance under the optimal SR.That is,the optimal parameter combinations can induce optimal SR and maximize harvesting performance.Thus,the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter.
基金Supported by Modern Agricultural Production Technological System Construction(No:CARS-49)Central Public-Interest Scientific Institution Basal Research Fund(No:2013JBFM06)Jiangsu Wuxi Agricultural Scientific Cooperation Program~~
文摘This paper studied the effects of different ratios of nitrogen and phospho- rus on the growth and competition of Anabaena sp. strain PCC and chloralla vul- gads (low nitrogen-phosphorus ratio group: N/P=16:1; Medium low nitrogen-phospho- rus ratio group: N/P=32:1; Medium high nitrogen-phosphorus ratio group: N/P=64:1; High nitrogen-phosphorus ratio group: N/P=320:1). Results suggested that the largest amount of anabaena sp.strain PCC survived in medium high nitrogen-phosphorus ratio group. The nitrogen-phosphorus ratio showed no significant influences on the growth of Chlorella vulgaris, but it exerted dramatic influences on the growth of Chlore/la vulgaris of the mixed cultivation system. The largest amount of Ch/orel/a vulgaris can be found in the medium-high nitrogen-phosphorus ratio group. The inhi- bition parameter of nitrogen-phosphorus on the algae was distinctive. Anabaena sp. strain PCC had advantages in the competition with the low nitrogen-phosphorus ra- tio and medium-low nitrogen-phosphorus ratio. Potential instability existed between anabaena sp.strain PCC and Chlorella vulgaris when the nitrogen to phosphorus ratio was medium-high and high.
基金supported by the Major Project of the Ministry of Science and Technology of China(No.2011ZX05024-001-01)National Nature Science Foundation of China(No.41140033)
文摘The quality factor Q, which reflects the energy attenuation of seismic waves in subsurface media, is a diagnostic tool for hydrocarbon detection and reservoir characterization. In this paper, we propose a new Q extraction method based on the energy ratio before and after the wavelet attenuation, named the energy-ratio method(ERM). The proposed method uses multipoint signal data in the time domain to estimate the wavelet energy without invoking the source wavelet spectrum, which is necessary in conventional Q extraction methods, and is applicable to any source wavelet spectrum; however, it requires high-precision seismic data. Forward zero-offset VSP modeling suggests that the ERM can be used for reliable Q inversion after nonintrinsic attenuation(geometric dispersion, refl ection, and transmission loss) compensation. The application to real zero-offset VSP data shows that the Q values extracted by the ERM and spectral ratio methods are identical, which proves the reliability of the new method.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProject(202203a07020011)supported by the Major Science and Technology Projects of Anhui Province,China+4 种基金Project(T2021137)supported by the National Talent Project,ChinaProject(T000508)supported by the Leading Talent Project of the Special Support Plan of Anhui Province,ChinaProject(GXXT-2021-075)supported by the University Synergy Innovation Program of Anhui Province,ChinaProject(2022AH010053)supported by the Excellent Scientific Research and Innovation Team of Universities in Anhui Province,ChinaProject(2022CX1004)supported by the Anhui University of Science and Technology Postgraduate Innovation Fund Project,China。
文摘Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of fractured rock mass.The strength and deformation features of grouting-reinforced rock mass were analyzed under different loading manners;the energy evolution mechanism of grouting-reinforced rock mass specimens with different particle sizes and features was investigated;the energy dissipation ratio and post-peak stress decreasing rate were employed to evaluate the bearing stability of grouting-reinforced rock mass.The results show that the strength and ductility of granite-reinforced rock mass(GRM)under biaxial loading are higher than that of sandstone-reinforced rock mass(SRM)under uniaxial loading.Besides,the energy evolution characteristics of grouting-reinforced rock mass under uniaxial and biaxial loading mainly could be divided into early,middle,and late stages.In the early stage,total,elastic,and dissipation energies were quite small with flatter curves;in the middle stage,elastic energy increased rapidly,whereas dissipation energy increased slowly;in the late stage,dissipation energy increased sharply.The energy dissipation ratio was used to represent the pre-peak plastic deformation.Under uniaxial loading,this ratio increased as the particle size increased and the pre-peak plastic deformation of grouting-reinforced rock mass became larger;under biaxial loading,it dropped as the particle size increased,and the pre-peak plastic deformation of grouting-reinforced rock mass became smaller.The post-peak stress decline rate A_(v) was used to assess the post-peak bearing performance of grouting-reinforced rock mass.Under uniaxial loading,parameter A_(v) exhibited reduction as the particle size kept increasing,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was greater,and the bearing capacity was greater;under biaxial loading,A_(v) increased with the particle size,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was low and the bearing capacity was reduced.The findings are considered instrumental in improving the stability of the roadway-surrounding rock by granite and sandstone grouting.
文摘Ammonia-diesel dual fuel(ADDF)engines for transportation applications are an important way to reduce carbon emissions.In order to achieve better combustion of ammonia in diesel engines.A small-bore single-cylinder engine was converted into an ADDF engine with the help of mature computational fluid dynamics(CFD)simulation software to investigate the performance of an engine with a high ammonia energy ratio(AER),and to study the effect of spray tilt angle on ADDF engine.The results showed that the increase in AER reduced nitric oxide(NO)and nitrogen dioxide(NO2)emissions but increased nitrous oxide(N2O)and unburned ammonia emissions.AER in the range of 50%-70%achieved lower greenhouse gases(GHG)emissions than the pure diesel mode.Relative to the pure diesel mode,when the AER was 60%,the indicated thermal efficiency(ITE)was increased by 0.2%and the GHG emissions were decreased by 22.3%,but carbon monoxide(CO)and Hydrocarbon(HC)emissions were increased.Increasing the in-cylinder combustion temperature or high-temperature region range of the ADDF engine could reduce GHG emissions.At an AER of 60%,an increase in the spray tilt angle helped the ammonia combustion in the residual gap to reduce the unburned ammonia emissions.Compared to the pure diesel mode with a spray tilt angle of 75°,an AER of 60%with a spray tilt angle of 77.5°improved the ITE by 1.5%,and reduced theGHGemissions by 25.7%.Adjusting the spray tilt angle of theADDFengine also reducedCOandHCemissions.This is an effective way to improve ADDF engine performance by adjusting the spray tilt angle.
基金Supported by the Initial Fund for Introduced Talent from the Tianjin University of Science and Technology (No. 20090413) the National Key Technology R&D Program (No. 2010BAC68B04)
文摘The ratio of nitrogen/phosphorus (N/P) is known to affect cell proliferation of some marine micro algae. We evaluated the effect of N/P ratios on the proliferation and succession of phytoplankton using five marine micro algae species. We used two sources of nitrogen, NH4Cl (N1) and urea (N2), and a single source of phosphorous, NaH2PO4(P). The optimal N/P ratio that differed among the five species was affected by the source of nitrogen, being as follows (N1/P, N2/P in order): Thalassiosira sp. (30/1, 20/1), Heterosigma akashiwo (30/1, 30/1), Chroornonas salina (20/1, 30/1), Chaetoceros gracilis (40/1, 60/1), and A lexandrium sp. (10/1, 30/1). Thus, the source of nitrogen must be considered when analyzing the N/P ratio. Our results provide insight for predicting phytoplankton succession in coastal waters and may be used to forecast the potential risk of harmful algal blooms.
文摘Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio.
基金supported by the University of Maryland Center for Environmental Science (UMCES), Horn Point Laboratory. This is UMCES contribution number 4503
文摘The effects of varying nitrogen (N): phosphorus (P) ratios on the growth and N-uptake and assimilation of the harmful dinoflagellates Prorocentrum minimum and Prorocentrum donghaiense were examined in turbidistat culture experiments. Algal cultures were supplied with media containing PO4^3- in various concentrations to obtain a wide range of N:P ratios. Experiments to determine rates of N uptake and assimilation of different N sources (NO^3-, NH4^+, urea and glycine by P. minimum and NO3^-, NH4^+ by P. donghaiense) were conducted using ^15-N tracer techniques at each N:P ratio. The growth rates suggested nutrient limitation at both high and low N:P ratios relative to the Redfield ratio. On a diel basis, the growth of both species was regulated by the light-dark cycle, which may be a result of regulation of both lightdependent growth and light-independent nutrient uptake. Maximum growth rates of both species always occurred at the beginning of light phase. In P-rich medium (low N:P ratio), both species had higher N assimilation rates, suggesting N limitation. Low assimilation coefficients at high N:P ratios suggested P limitation of N uptake and assimilation. NO3 ^-and NH4^+ contributed more than 90% of the total N uptake of P. minimum. Reduced N sources were more quickly assimilated than NO3^-. Highest average daily growth rates were recorded near an N:P ratio of 12 for both species. The N uptake rates of cultures at N:P ratios near Redfield ratio were more balanced with growth rates. The linkage between growth rates and N uptake/assimilation rates were conceptually described by the variation of cell N quota. The N:P ratios affect the N uptake and growth of Prorocentrum spp., and may regulate their bloom progression in eutrophic ecosystems.
基金Project(200801346) supported by the China Postdoctoral Science FoundationProject(2008RS4022) supported by the Hunan Postdoctoral Scientific ProgramProject(2008) supported by the Postdoctoral Science Foundation of Central South University
文摘To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into intrinsic mode functions using the empirical mode decomposition approach. Based on the empirical mode decomposition results, the energy of each intrinsic mode function was extracted, and the vortex energy ratio was proposed to analyze how the perturbation in the flow affected the measurement performance of the vortex flowmeter. The relationship between the vortex energy ratio of the signal and the flow condition was established. The results show that the vortex energy ratio is sensitive to the flow condition and ideal for the characterization of the vortex flowmeter signal. Moreover, the vortex energy ratio under normal flow condition is greater than 80%, which can be adopted as an indicator to diagnose the state of a vortex flowmeter.
基金supported by Hunan Province Natural Science Foundation (No.2015JJ2062)the State Key Laboratory of Soil and Sustainable Agriculture (Grant No.Y412201416)the Scientific Research Fund of Hunan Provincial Education Department (Grant No.14A054)
文摘In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon isotope ratio( δ^(13)C),leaf nitrogen content(LNC) and stomatal density(SD) with altitude variation in northsubtropical humid mountain climate zone of China.The results showed that LNC and SD both significantly increased linearly along the altitudinal gradient ranging from 1000 to 2200 m,whereas leafδ^(13)C exhibited a significantly negative correlation with the altitude.Such a correlation pattern differs obviously from that obtained in offshore low-altitude humid environment or inland high-altitude semi-arid environment,suggesting that the pattern of increasing δ^(13)C with the altitude cannot be generalized.The negative correlation between δ ^(13)C and altitude might be attributed mainly to the strengthening of carbon isotope fractionation in plants caused by increasing precipitation with altitude.Furthermore,there was a remarkable negative correlation between leaf δ ^(13)C and LNC.One possible reason was that increasing precipitation that operates to increase isotopic discrimination with altitude overtook the LNC in determining the sign of leaf δ ^(13)C.The significant negative correlation between leaf δ ^(13)C and SD over altitudes was also found in the present study,indicating that increases in SD with altitude would reduce,rather than enhance plant δ^(13)C values.
基金Supported by State Key Research and Development Program of Ministry of Science and Technology(2016YFD0101603)Fundamental Research Funds for the Central Universities in 2016(XDJK2016A020)
文摘In order to screen suitable high hybrid wheat seed production technology,the split-plot experiment design was adopted and study was carried out about the effects of the different row ratios of male and female parents and application amount of nitrogen fertilizer on hybrid wheat seed production and its component factors. The results showed that the seed production increased with the increase in the number of female parent row. When the row ratio of male and female parents was 2 ∶ 6,the seed production was 3 683. 8 kg/ha; when the application amount of nitrogen fertilization was 50 kg/ha,the seed production was 3 649. 4 kg/ha; the interaction between the row ratio of male and female parents and the application amount of nitrogen fertilizer indicated that when the row ratio of male and female parents was 2∶ 6 and the application amount of nitrogen fertilizer was 300 kg/ha,the seed production reached the highest( 4160. 6 kg/ha). The row ratio of male and female parents and application amount of nitrogen fertilizer had significant effect on the component factors of seed production,including the number of grains per spike,spike weight and setting percentage. When the row ratio of male and female parents was 2∶ 5,the number of grains per spike,spike weight and setting percentage were the highest at 26. 7 grains,1. 12 g,and 62. 6% respectively; when application amount of nitrogen fertilizer was 450 kg/ha,the number of grains per spike,spike weight and setting percentage were the highest at 26. 0 grains,1. 08 g,and59. 2% respectively; the interaction of row ratio of male and female parents and application amount of nitrogen fertilizer had significant effect on the number of grains per spike,spike weight and setting percentage; when the row ratio of male and female parents was 2∶ 5 and the application amount of nitrogen fertilizer was 300 kg/ha,the number of grains per spike,spike weight and setting percentage were the highest at 29. 6grains,1. 24 g,and 71. 6% respectively. The number of grains per spike is the largest component factor for seed production. Increasing the number of grains per spike can increase the seed production. According to the effects of row ratio of male and female parents and application amount of nitrogen fertilizer on the component factors of seed production,the optimal condition was 2∶ 5-2∶ 6 for row ratio of male and female parents and 300-450 kg/ha for application amount of nitrogen fertilizer.
文摘Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.
文摘Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to abundant sunshine, strong solar radiation andmoderate heat, the agriculture is very developed. The south mountainous area of Ningxia, including both Yanchi and Tongxin counties,is short of rain, The vast lands cannot be irrigated. Nonirrigated agriculture and